Linear Algebra and Its Applications (5th Edition)
5th Edition
ISBN: 9780321982384
Author: David C. Lay, Steven R. Lay, Judi J. McDonald
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6.6, Problem 18E
Suppose the x-coordinates of the data (x1, y1), …, (xn, yn) are in mean deviation form, so that Σ xi = 0. Show that if X is the design matrix for the least-squares hue in this case, then XTX is a diagonal matrix.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Find the least-squares regression line ŷ =b0+b1x through the points
(-2,2), (2,6), (5,13),(8,20),(10,24).
For what value of x is ŷ =0?
x =?
Find the least squares line y = ß1 + B2x that best fits the data points (0, 1),
(2,0), (3, 1), (5, –1). What is the least squares error?
Set up the system for the linear least squares approximation for the data (-2,0), (2,3) and (3,1)
Chapter 6 Solutions
Linear Algebra and Its Applications (5th Edition)
Ch. 6.1 - Let a = [21] and b = [31]. Compute abaa and...Ch. 6.1 - Let c = [4/312/3] and d = [561]. a. Find a unit...Ch. 6.1 - Let W be a subspace of Rn. Exercise 30 establishes...Ch. 6.1 - Compute the quantities in Exercises 18 using the...Ch. 6.1 - Compute the quantities in Exercises 18 using the...Ch. 6.1 - Compute the quantities in Exercises 18 using the...Ch. 6.1 - Compute the quantities in Exercises 18 using the...Ch. 6.1 - Compute the quantities in Exercises 18 using the...Ch. 6.1 - Compute the quantities in Exercises 18 using the...Ch. 6.1 - Compute the quantities in Exercises 18 using the...
Ch. 6.1 - Compute the quantities in Exercises 18 using the...Ch. 6.1 - In Exercises 912, find a unit vector in the...Ch. 6.1 - In Exercises 912, find a unit vector in the...Ch. 6.1 - In Exercises 912, find a unit vector in the...Ch. 6.1 - Prob. 12ECh. 6.1 - Find the distance between x = [103] and y = [15].Ch. 6.1 - Find the distance between u = [052] and z = [418].Ch. 6.1 - Determine which pairs of vectors in Exercises 1518...Ch. 6.1 - Determine which pairs of vectors in Exercises 1518...Ch. 6.1 - Determine which pairs of vectors in Exercises 1518...Ch. 6.1 - Determine which pairs of vectors in Exercises 1518...Ch. 6.1 - In Exercises 19 and 20, all vectors are in n. Mark...Ch. 6.1 - In Exercises 19 and 20, all vectors are in n. Mark...Ch. 6.1 - Use the transpose definition of the inner product...Ch. 6.1 - Prob. 22ECh. 6.1 - Let u = [251] and v = [746]. Compute and compare...Ch. 6.1 - Verify the parallelogram law for vectors u and v...Ch. 6.1 - Let v = [ab] Describe the set H of vectors [xy]...Ch. 6.1 - Let u = [567], and let W be the set of all x in 3...Ch. 6.1 - Suppose a vector y is orthogonal to vectors u and...Ch. 6.1 - Suppose y is orthogonal to u and v. Show that y is...Ch. 6.1 - Let W = Span {v1,,vp}. Show that if x is...Ch. 6.1 - Let W be a subspace of n, and let W be the set of...Ch. 6.1 - Show that if x is in both W and W, then x = 0.Ch. 6.2 - Let u1= [1/52/5] and u2= [2/51/5]. Show that {u1....Ch. 6.2 - Let y and L be as in Example 3 and Figure 3....Ch. 6.2 - Let U and x be as in Example 6. and let y = [326]....Ch. 6.2 - Let U be an n n matrix with orthonormal columns....Ch. 6.2 - In Exercises 16, determine which sets of vectors...Ch. 6.2 - In Exercises 16, determine which sets of vectors...Ch. 6.2 - In Exercises 16, determine which sets of vectors...Ch. 6.2 - In Exercises 16, determine which sets of vectors...Ch. 6.2 - In Exercises 16, determine which sets of vectors...Ch. 6.2 - In Exercises 16, determine which sets of vectors...Ch. 6.2 - In Exercises 710, show that {u1, u2} or {u1, u2,...Ch. 6.2 - In Exercises 710, show that {u1, u2} or {u1, u2,...Ch. 6.2 - In Exercises 710, show that {u1, u2} or {u1, u2,...Ch. 6.2 - In Exercises 710, show that {u1, u2} or {u1, u2,...Ch. 6.2 - Compute the orthogonal projection of [17] onto the...Ch. 6.2 - Compute the orthogonal projection of [11] onto the...Ch. 6.2 - Let y = [23] and u = [47] Write y as the sum of...Ch. 6.2 - Let y = [26] and u = [71] Write y as the sum of a...Ch. 6.2 - Let y = [31] and u = [86] Compute the distance...Ch. 6.2 - Let y = [39] and u = [12] Compute the distance...Ch. 6.2 - In Exercises 1722, determine which sets of vectors...Ch. 6.2 - In Exercises 1722, determine which sets of vectors...Ch. 6.2 - In Exercises 1722, determine which sets of vectors...Ch. 6.2 - In Exercises 1722, determine which sets of vectors...Ch. 6.2 - In Exercises 1722, determine which sets of vectors...Ch. 6.2 - In Exercises 1722, determine which sets of vectors...Ch. 6.2 - In Exercises 23 and 24, all vectors are in n. Mark...Ch. 6.2 - In Exercises 23 and 24, all vectors are in n. Mark...Ch. 6.2 - Prove Theorem 7. [Hint: For (a), compute |Ux||2,...Ch. 6.2 - Suppose W is a sub space of n spanned by n nonzero...Ch. 6.2 - Let U be a square matrix with orthonormal columns....Ch. 6.2 - Let U be an n n orthogonal matrix. Show that the...Ch. 6.2 - Let U and V be n n orthogonal matrices. Explain...Ch. 6.2 - Let U be an orthogonal matrix, and construct V by...Ch. 6.2 - Show that the orthogonal projection of a vector y...Ch. 6.2 - Let {v1, v2} be an orthogonal set of nonzero...Ch. 6.2 - Prob. 33ECh. 6.2 - Given u 0 in n, let L = Span{u}. For y in n, the...Ch. 6.3 - Let u1 = [714], u2 = [112], x = [916], and W =...Ch. 6.3 - Let W be a subspace of n. Let x and y be vectors...Ch. 6.3 - In Exercises 1 and 2, you may assume that {u1,,...Ch. 6.3 - u1 = [1211], u2 = [2111], u3 = [1121], u4 =...Ch. 6.3 - In Exercises 36, verify that {u1, u2} is an...Ch. 6.3 - In Exercises 36, verify that {u1, u2} is an...Ch. 6.3 - In Exercises 36, verify that {u1, u2} is an...Ch. 6.3 - In Exercises 36, verify that {u1, u2} is an...Ch. 6.3 - In Exercises 710, let W be the subspace spanned by...Ch. 6.3 - In Exercises 710, let W be the subspace spanned by...Ch. 6.3 - In Exercises 710, let W be the subspace spanned by...Ch. 6.3 - In Exercises 710, let W be the subspace spanned by...Ch. 6.3 - In Exercises 11 and 12, find the closest point to...Ch. 6.3 - In Exercises 11 and 12, find the closest point to...Ch. 6.3 - In Exercises 13 and 14, find the best...Ch. 6.3 - In Exercises 13 and 14, find the best...Ch. 6.3 - Let y = [595], u1 = [351], u2 = [321]. Find die...Ch. 6.3 - Let y, v1, and v2 be as in Exercise 12. Find the...Ch. 6.3 - Let y = [481], u1 = [2/31/32/3], u2 = [2/32/31/3],...Ch. 6.3 - Let y = [79], u1 = [1/103/10], and W = Span {u1}....Ch. 6.3 - Let u1 = [112], u2 = [512], and u3 = [001].Note...Ch. 6.3 - Let u1 and u2 be as in Exercise 19, and let u4 =...Ch. 6.3 - In Exercises 21 and 22, all vectors and subspaces...Ch. 6.3 - In Exercises 21 and 22, all vectors and subspaces...Ch. 6.3 - Let A be an m m matrix. Prove that every vector x...Ch. 6.3 - Let W be a subspace of n with an orthogonal basis...Ch. 6.4 - Let W = Span {x1, x2}, where x1 = [111] and x2 =...Ch. 6.4 - Suppose A = QR, where Q is an m n matrix with...Ch. 6.4 - In Exercises 1-6, the given set is a basis for a...Ch. 6.4 - In Exercises 1-6, the given set is a basis for a...Ch. 6.4 - In Exercises 1-6, the given set is a basis for a...Ch. 6.4 - In Exercises 1-6, the given set is a basis for a...Ch. 6.4 - In Exercises 1-6, the given set is a basis for a...Ch. 6.4 - In Exercises 1-6, the given set is a basis for a...Ch. 6.4 - Find an orthonormal basis of the subspace spanned...Ch. 6.4 - Find an orthonormal basis of the subspace spanned...Ch. 6.4 - Find an orthogonal basis for the column space of...Ch. 6.4 - Find an orthogonal basis for the column space of...Ch. 6.4 - Find an orthogonal basis for the column space of...Ch. 6.4 - Find an orthogonal basis for the column space of...Ch. 6.4 - In Exercises 13 and 14, the columns of Q were...Ch. 6.4 - In Exercises 13 and 14, the columns of Q were...Ch. 6.4 - Find a QR factorization of the matrix in Exercise...Ch. 6.4 - Find a QR factorization of the matrix in Exercise...Ch. 6.4 - In Exercises 17 and 18, all vectors and subspaces...Ch. 6.4 - In Exercises 17 and 18, all vectors and subspaces...Ch. 6.4 - Suppose A = QR, where Q is m n and R is n n....Ch. 6.4 - Suppose A = QR, where R is an invertible matrix....Ch. 6.4 - Given A = QR as in Theorem 12, describe how to...Ch. 6.4 - Let u1, , up be an orthogonal basis for a subspace...Ch. 6.4 - Suppose A = QR is a QR factorization of an m n...Ch. 6.4 - [M] Use the Gram-Schmidt process as in Example 2...Ch. 6.4 - [M] Use the method in this section to produce a QR...Ch. 6.5 - Let A = [133151172] and b = [535]. Find a...Ch. 6.5 - What can you say about the least-squares solution...Ch. 6.5 - In Exercises 1-4, find a least-squares solution of...Ch. 6.5 - In Exercises 1-4, find a least-squares solution of...Ch. 6.5 - In Exercises 1-4, find a least-squares solution of...Ch. 6.5 - In Exercises 1-4, find a least-squares solution of...Ch. 6.5 - In Exercises 5 and 6, describe all least-squares...Ch. 6.5 - In Exercises 5 and 6, describe all least-squares...Ch. 6.5 - Compute the least-squares error associated with...Ch. 6.5 - Compute the least-squares error associated with...Ch. 6.5 - In Exercises 9-12, find (a) the orthogonal...Ch. 6.5 - In Exercises 9-12, find (a) the orthogonal...Ch. 6.5 - In Exercises 9-12, find (a) the orthogonal...Ch. 6.5 - In Exercises 9-12, find (a) the orthogonal...Ch. 6.5 - Let A = [342134], b = [1195], u = [51], and v =...Ch. 6.5 - Let A = [213432], b = [544], u = [45], and v =...Ch. 6.5 - In Exercises 15 and 16, use the factorization A =...Ch. 6.5 - In Exercises 15 and 16, use the factorization A =...Ch. 6.5 - In Exercises 17 and 18, A is an m n matrix and b...Ch. 6.5 - a. If b is in the column space of A, then every...Ch. 6.5 - Let A be an m n matrix. Use the steps below to...Ch. 6.5 - Let A be an m n matrix such that ATA is...Ch. 6.5 - Let A be an m n matrix whose columns are linearly...Ch. 6.5 - Use Exercise 19 to show that rank ATA = rank A....Ch. 6.5 - Suppose A is m n with linearly independent...Ch. 6.5 - Find a formula for the least-squares solution of...Ch. 6.5 - Describe all least-squares solutions of the system...Ch. 6.6 - When the monthly sales of a product are subject to...Ch. 6.6 - In Exercises 1-4, find the equation y = 0 + 1x of...Ch. 6.6 - In Exercises 1-4, find the equation y = 0 + 1x of...Ch. 6.6 - In Exercises 1-4, find the equation y = 0 + 1x of...Ch. 6.6 - In Exercises 1-4, find the equation y = 0 + 1x of...Ch. 6.6 - Let X be the design matrix used to find the...Ch. 6.6 - Let X be the design matrix in Example 2...Ch. 6.6 - A certain experiment produces the data (1, 7.9),...Ch. 6.6 - Let x=1n(x1++xn) and y=1n(y1++yn). Show that the...Ch. 6.6 - Derive the normal equations (7) from the matrix...Ch. 6.6 - Use a matrix inverse to solve the system of...Ch. 6.6 - a. Rewrite the data in Example 1 with new...Ch. 6.6 - Suppose the x-coordinates of the data (x1, y1), ,...Ch. 6.6 - Exercises 19 and 20 involve a design matrix X with...Ch. 6.6 - Show that X2=TXTy. [Hint: Rewrite the left side...Ch. 6.7 - Use the inner product axioms to verify the...Ch. 6.7 - Use the inner product axioms to verify the...Ch. 6.7 - Let 2 have the inner product of Example 1, and let...Ch. 6.7 - Let 2 have the inner product of Example 1. Show...Ch. 6.7 - Exercises 3-8 refer to 2 with the inner product...Ch. 6.7 - Exercises 3-8 refer to 2 with the inner product...Ch. 6.7 - Exercises 3-8 refer to 2 with the inner product...Ch. 6.7 - Exercises 3-8 refer to 2 with the inner product...Ch. 6.7 - Exercises 3-8 refer to 2 with the inner product...Ch. 6.7 - Exercises 3-8 refer to 2 with the inner product...Ch. 6.7 - Let 3 have the inner product given by evaluation...Ch. 6.7 - Let 3 have the inner product as in Exercise 9,...Ch. 6.7 - Let p0, p1, and p2 be the orthogonal polynomials...Ch. 6.7 - Find a polynomial p3 such that {p0, p1, p2, p3}...Ch. 6.7 - Let A be any invertible n n matrix. Show that for...Ch. 6.7 - Let T be a one-to-one linear transformation from a...Ch. 6.7 - Use the inner product axioms and other results of...Ch. 6.7 - Use the inner product axioms and other results of...Ch. 6.7 - Use the inner product axioms and other results of...Ch. 6.7 - Use the inner product axioms and other results of...Ch. 6.7 - Given a 0 and b 0, let u=[ab] and v=[ba]. Use...Ch. 6.7 - Let u=[ab] and v=[11]. Use the Cauchy-Schwarz...Ch. 6.7 - Exercises 21-24 refer to V = C[0, 1], with the...Ch. 6.7 - Exercises 21-24 refer to V = C[0, 1], with the...Ch. 6.7 - Compute f for f in Exercise 21. Exercises 21-24...Ch. 6.7 - Compute g for g in Exercise 22. Exercises 21-24...Ch. 6.7 - Let V be the space C[1, 1] with the inner product...Ch. 6.7 - Let V be the space C[2, 2] with the inner product...Ch. 6.8 - Let q1(t) = 1, q2(t) = t, and q3(t) = 3t2 4....Ch. 6.8 - Find the first-order and third-order Fourier...Ch. 6.8 - Find the least-squares line y = 0 + 1x that best...Ch. 6.8 - Suppose 5 out of 25 data points in a weighted...Ch. 6.8 - Fit a cubic trend function to the data in Example...Ch. 6.8 - To make a trend analysis of six evenly spaced data...Ch. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - Prob. 7ECh. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - In Exercises 5-14, the space is C[0, 2] with the...Ch. 6.8 - [M] Refer to the data in Exercise 13 in Section...Ch. 6.8 - [M] Let f4 and f5 be the fourth-order and...Ch. 6 - Prob. 1SECh. 6 - Prob. 2SECh. 6 - Let {v1, , vp} be an orthonormal set in n. Verify...Ch. 6 - Let U be an n n orthogonal matrix. Show that if...Ch. 6 - Show that if an n n matrix U satisfies (Ux) (Uy)...Ch. 6 - Show that if U is an orthogonal matrix, then any...Ch. 6 - A Householder matrix, or an elementary reflector,...Ch. 6 - Let T: n n be a linear transformation that...Ch. 6 - Let u and v be linearly independent vectors in n...Ch. 6 - Suppose the columns of A are linearly independent....Ch. 6 - If a, b, and c are distinct numbers, then the...Ch. 6 - Consider the problem of finding an eigenvalue of...Ch. 6 - Use the steps below to prove the following...Ch. 6 - Explain why an equation Ax = b has a solution if...Ch. 6 - Exercises 15 and 16 concern the (real) Schur...Ch. 6 - Let A be an n n matrix with n real eigenvalues,...
Additional Math Textbook Solutions
Find more solutions based on key concepts
Factor each expression completely. 41.28y2+43y48
High School Math 2012 Common-core Algebra 1 Practice And Problem Solvingworkbook Grade 8/9
Presale Order A wireless store owner takes presale orders for a new smartphone and tablet. He gets 340 preorder...
College Algebra (10th Edition)
Value of g(3p) .
Glencoe Algebra 1, Student Edition, 9780079039897, 0079039898, 2018
If the run of a line is 10 and its rise is 6; then its slope is ______.
Elementary & Intermediate Algebra
76. Dew Point and Altitude The dew point decreases as altitude increases. If the dew point on the ground is 80°...
College Algebra with Modeling & Visualization (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Find the least squares regression line for the points {(-2, –5), (2, –1), (3, 2), (4, 7)}.arrow_forwardFind the least-squares regression line ŷ = bo + bjx through the points (-2, 0), (3, 7), (5, 14), (9, 19), (12, 26), and then use it to find point estimates ŷ corresponding to x = 4 and x = 10. For x = 4, y = For x = 10, y =arrow_forward5arrow_forward
- a. Rewrite the data points (2,1), (4,2), (8,6) and (9,6) with new x-coordinates in mean-deviation form. Let X be the associated design matrix. Why are the columns of X orthogonal? b. Write the normal equations for the data in part (a), and solve them to find the least-squares line, y =B₁ + B₁x², * where x = x-5.75.arrow_forwardConsider the following population model for household consumption: cons = a + b1 * inc+ b2 * educ+ b3 * hhsize + u where cons is consumption, inc is income, educ is the education level of household head, hhsize is the size of a household. Suppose a researcher estimates the model and gets the predicted value, cons_hat, and then runs a regression of cons_hat on educ, inc, and hhsize. Which of the following choice is correct and please explain why. A) be certain that R^2 = 1 B) be certain that R^2 = 0 C) be certain that R^2 is less than 1 but greater than 0. D) not be certainarrow_forwardLet X1,X2 denote the variables for the two-dimensional data in Exercise 1. Find a new variable yl of the form yı = cjX¡ + c2X2, with c +c; = 1, such that y1 has maximum possible variance over the given data. How much of the variance in the data is explained by y1?arrow_forward
- Use a table to obtain the formula for the best least-squares fit to the data following data points: (1,2) (2, 3) (3,7) (4,9) (5, 12) Results from your Table ● Σα ● X = Συ · Σxy Σα2 Regression Line •y= - -arrow_forwardThe annual energy consumption in billions of Btu for both natural gas and coal is shown for a random selection of states. Gas 223 474 377 289 747 146 Coal 478 631 413 356 736 474 If 500 billion Btu of natural gas is used then what is the projected amount of coal that is usedThe projected amount of coal that is used is billion Btu. (Use your regression equation with the rounded values for m and b to find your answer to this question. Round your answer to THREE decimal places, add extra zeros at the end, if needed) (Round answer to 3 decimal places, for example, XXX.XXX)arrow_forwarda. Rewrite the data points (2,1), (4,2), (8,6) and (9,6) with new x-coordinates in mean-deviation form. Let X be the associated design matrix. Why are the columns of X orthogonal? b. Write the normal equations for the data in part (a), and solve them to find the least-squares line, y =B₁ + B₁x², where x = x-5.75. The associated design matrix, X, is 1 - 1.75 2.25 3.25 1 the entries in one column are all 1 and the entries in the other column sum to 0. (Simplify your answer. Use ascending order.) B. Therefore, the columns of X are orthogonal because b. Write the normal equations for the data from part (a). Select the correct choice below and fill in the answer boxes within your choice. (Simplify your answer.) O A. [Bo B₁] = Bo 421-0arrow_forward
- (3) Construct a linear spline interpolating (-1, 0), (0, 1), (1, 3).arrow_forwardA statistical program is recommended. An automobile dealer conducted test to determine whether the time needed to complete a minor engine tune-up depends on whether a computerized engine analyzer or an electronic analyzer is used. Because tune-up time varies among compact, intermediate, and full-sized cars, the three types of cars were used as blocks in the experiment. The data (time in minutes) obtained follow. x₂ Analyzer 0 Computerized Electronic Define all variables. Let x₁ = 0 if a computerized analyzer is used, or let x₁ = X3 O Ho: B₁ * 0 H₂: B₁ = 0 0 Compact 1 52 Car 41 Compact Intermediate Full Size Intermediate O Ho: One or more of the parameters is not equal to zero. H₁: B₂ =B3 = 0 Car 57 Find the p-value. (Round your answer to three decimal places.) p-value = 43 Use α = 0.05 to test for any significant differences between the two analyzers. State the null and alternative hypotheses. O Ho: B₁ = 0 H₂: B₁ = 0 Full Size o Ho: Ba = By = 0 H₂: One or more of the parameters is not…arrow_forward8) Consider the data (1,1), (3,9), (4,16), If f[1,3] = 4, f[3,4] = z, f[1,3,4] 1. find z %3Darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY