Concept explainers
6.56 and 6.57 A composite beam is made by attaching the timber and steel portions shown with bolts of 12-mm diameter spaced longitudinally every 200 mm. The modulus of elasticity is 10 GPa for the wood and 200 GPa for the steel. For a vertical shear of 4 kN, determine (a) the average shearing stress in the bolts, (b) the shearing stress at the center of the cross section. (Hint: Use the method indicated in Prob. 6.55.)
Fig. p6.56
(a)
The average shearing stress in the bolts.
Answer to Problem 56P
The average shearing stress in the bolts is
Explanation of Solution
Given information:
The diameter of the bolts is
The longitudinal spacing is
The beam is subjected to a vertical shear of
The modulus of elasticity for wood
The modulus of elasticity for steel
Calculation:
Consider the steel is to be the reference material. So modular ratio of steel is
Calculate the modular ratio of timber wood
Here,
Substitute
Total depth of the section d is as follows:
Calculate the moment of inertia for the symmetric section I as shown below.
Here, b is the width of the section and d is the depth of the section.
For steel:
For wood:
Calculate the moment of inertia for the transformed section as shown below.
Substitute 1 for
Calculate the first moment of area as shown below.
For wooden section:
Calculate the first moment of area for the transformed section Q as shown below.
Substitute
Calculate the horizontal shear per unit length q as shown below.
Here V is the vertical shear.
Substitute
Calculate the force acting on the bolt
Here, s is the longitudinal spacing.
Substitute
Calculate the area of bolt
Here,
Substitute
The bolt is subjected to double shear.
Calculate the shearing stress of the bolt
Substitute
Therefore, the average shearing stress in the bolts is
(b)
The shearing stress at the center of the cross section.
Answer to Problem 56P
The shearing stress at the center of the cross section is
Explanation of Solution
Given information:
The diameter of the bolts is
The longitudinal spacing is
The beam is subjected to a vertical shear of
The modulus of elasticity for wood
The modulus of elasticity for steel
Calculation:
Refer to part (a).
Moment of inertia for the transformed section
Calculate the first moment of area as shown below.
For the two steel plates:
Calculate the first moment of area along the neutral axis for the transformed section as shown below.
Substitute
Calculate the horizontal shear per unit length as shown below.
Substitute
Calculate the shearing stress as shown below.
Substitute
Therefore, the shearing stress at the center of the cross section is
Want to see more full solutions like this?
Chapter 6 Solutions
EBK MECHANICS OF MATERIALS
- Four L102 x 102 x 9.5 steel angle shapes and a 12 x 400-mm steel plate are bolted together to form a beam with the cross section shown. The bolts are of 22-mm diameter and are spaced longitudinally every 120 mm. Knowing that the beam is subjected to a vertical shear of 240 kN, determine the average shearing stress in each bolt.arrow_forwardThe strut AB made from two bars (thickness of each bar = 0.50 in) is connected to a rectangular beam CD (b = 0.80 in x h = 7.5 in) at joint B. The beam carries a concentrated load of 2750 lb at the end joint D. (a) determine the minimum diameter of the bolt at B if the shearing stress in the bolt is not to exceed 14000 psi. (b) determine the minimum diameter of the bolt at B if the allowable bearing stress in the bar plate is 20000 psi. (Please provide detailed solution with FBD,thank you) ( a ) d = ? in ( b ) d = ? inarrow_forwardThe thin-walled Z-section beam as shown in Fig.(1) when the shear load S_y=100N, applied in the plane of the web BC. The second moments of area of the section about the x and y axes are; S₂ " a. Ix = 41666.66 mm4 ly 10416.66mm 4 - b. Ix=40066.67 mmª, 50mm Iy = 30416.67mm4 c. Ix 11633.61 mm², Iy = 604110.61mm 4 d. None of the above SA Fig.(1) B G SB 1mm 25mmarrow_forward
- The American Standard rolled-steel beam shown has been reinforced by attaching to it two 16 x 200-mm plates, using 18-mm-diameter bolts spaced longitudinally every 120 mm. Knowing that the average allowable shearing stress in the bolts is 90 MPa, determine the largest permissible vertical shearing force.arrow_forwardNo. 1arrow_forwardUse transformed section pleasearrow_forward
- Answers providedarrow_forwardL/4 D L/2 LA B A timber beam AB of length L and rectangular cross section carries a uniformly distributed load w and is supported as shown. (a) Show that the ratio of the maximum values of the shearing and normal stresses in the beam is equal to 2h/L, where h and L are, respectively, the depth and the length of the beam. (b) Determine the depth h and the width b of the beam, knowing that L = 5 m, w = 8 kN/m, Tm = 1.08 MPa, and om = 12 MPa.arrow_forwardAn extruded beam has the cross section shown and a uniform wall thickness of 3 mm. For a vertical shear of 10 kN, determine (a) the shearing stress at point A, (b) the maximum shearing stress in the beam. Also sketch the shear flow in the cross sectionarrow_forward
- For the beam and loading shown, consider section n–nand determine (a) the largest shearing stress in that section, (b) the shearing stress at point aarrow_forward3. Two wooden planks, each 7/8 in thick and 6in wide, are joined by the glued mortise joint shown. Knowing that the wood used shears off along its grain when the average shearing stress reaches 120psi, determine the smallest allowable length d of the cuts if the joint is to withstand an axial load of magnitude P=1200-lb. Note: Seven surfaces carry the load, P=1200-lb Glue - in. 6 in. in.arrow_forwardP.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY