Concept explainers
The composite beam shown is made by welding C200 × 17.1 rolled-steel channels to the flanges of a W250 × 80 wide-flange rolled-steel shape. Knowing that the beam is subjected to a vertical shear of 200 kN, determine (a) the horizontal shearing force per meter at each weld, (b) the shearing stress at point a of the flange of the wide-flange shape.
Fig. p6.97
(a)

The horizontal shearing force per meter at each weld.
Answer to Problem 97RP
The horizontal shearing force per meter at each weld is
Explanation of Solution
Given information:
The composite beam is made by welding
The beam is subjected to a vertical shear of
Calculation:
Provide the section properties of
The Area of the section is
The width of the flange is
The thickness of flange is
The moment of inertia of the section is
The centroid of the section is
Provide the section properties of
The overall depth of the section is
Thickness of flange is
Moment of inertia of the section is
Sketch the channel section above the neutral axis as shown in Figure 1.
Refer to Figure 1.
Calculate the location of the centroid
Calculate the moment of inertia (I) for the composite beam as shown below.
Substitute
Calculate the first moment of area as shown below.
Calculate the first moment for the two welds (Q) as shown below.
Calculate the horizontal shear per unit length (q) as shown below.
Substitute
Calculate the shearing force per meter of weld for one weld as shown below.
Therefore, the horizontal shearing force per meter at each weld is
(b)

The shearing stress at point a of the flange.
Answer to Problem 97RP
The shearing stress at point a of the flange is
Explanation of Solution
Given information:
The beam is subjected to a vertical shear of
Calculation:
Refer to part (a).
The moment of inertia is
Sketch the channel section through point a as shown in Figure 2.
Refer to Figure 2.
The thickness of the section is
Substitute
Calculate the location of the centroid at point a
Calculate the first moment of area
Calculate the shear stress
Substitute
Therefore, the shearing stress at point a of the flange is
Want to see more full solutions like this?
Chapter 6 Solutions
EBK MECHANICS OF MATERIALS
- PROBLEM 3.46 The solid cylindrical rod BC of length L = 600 mm is attached to the rigid lever AB of length a = 380 mm and to the support at C. When a 500 N force P is applied at A, design specifications require that the displacement of A not exceed 25 mm when a 500 N force P is applied at A For the material indicated determine the required diameter of the rod. Aluminium: Tall = 65 MPa, G = 27 GPa. Aarrow_forwardFind the equivalent mass of the rocker arm assembly with respect to the x coordinate. k₁ mi m2 k₁arrow_forward2. Figure below shows a U-tube manometer open at both ends and containing a column of liquid mercury of length l and specific weight y. Considering a small displacement x of the manometer meniscus from its equilibrium position (or datum), determine the equivalent spring constant associated with the restoring force. Datum Area, Aarrow_forward
- 1. The consequences of a head-on collision of two automobiles can be studied by considering the impact of the automobile on a barrier, as shown in figure below. Construct a mathematical model (i.e., draw the diagram) by considering the masses of the automobile body, engine, transmission, and suspension and the elasticity of the bumpers, radiator, sheet metal body, driveline, and engine mounts.arrow_forward3.) 15.40 – Collar B moves up at constant velocity vB = 1.5 m/s. Rod AB has length = 1.2 m. The incline is at angle = 25°. Compute an expression for the angular velocity of rod AB, ė and the velocity of end A of the rod (✓✓) as a function of v₂,1,0,0. Then compute numerical answers for ȧ & y_ with 0 = 50°.arrow_forward2.) 15.12 The assembly shown consists of the straight rod ABC which passes through and is welded to the grectangular plate DEFH. The assembly rotates about the axis AC with a constant angular velocity of 9 rad/s. Knowing that the motion when viewed from C is counterclockwise, determine the velocity and acceleration of corner F.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





