Organic Chemistry
Organic Chemistry
2nd Edition
ISBN: 9781118452288
Author: David R. Klein
Publisher: WILEY
Question
Book Icon
Chapter 6.4, Problem 6CC

(a)

Interpretation Introduction

Interpretation:

For the given set of conditions the reaction favors reactant or product side should be identified.

Concept introduction:

Entropy: It is usually defined as the degree of the randomness or disorder present in the respective system.

The total entropy change associated with given reaction is equal to the sum of both entropy change associated with the system and the surrounding.

The entropy change within the system is the difference between the final and the initial states in the system. The entropy change in the given chemical reaction is as follows,

ΔS = Number of products – Number of reactants

Enthalpy:

The enthalpy change for the reaction is determined by bond breaks and bond formation in the reaction.

ΔΗ (Enthalpy), ΔS (Entropy) and ΔG (Gibbs free energy) can be identified by using formula.

ΔΗ (Enthalpy) could be determined by using following formula

ΔΗ (Enthalpy of the reaction) = ΔΗ (bonds broken) – ΔΗ (bonds formed)

Gibbs free energy: The Gibbs free energy depends on the two terms entropy change and the enthalpy change which is affected by the temperature.

General formula to calculate the Gibbs free energy is ΔG = ΔΗ –TΔS

When the heat energy was absorbed by the system from the surrounding is called endothermic reaction

When heat energy or light energy was unconfined to the surrounding from the system is called exothermic reaction.

Equilibrium constant: It is defined as the ratio of concentration of product with respect to the reactant. The value of Keq determines the side in which the given reaction favors.

(b)

Interpretation Introduction

Interpretation:

For the given set of conditions the reaction favors reactant or product side should be identified.

Concept introduction:

Entropy: It is usually defined as the degree of the randomness or disorder present in the respective system.

The total entropy change associated with given reaction is equal to the sum of both entropy change associated with the system and the surrounding.

The entropy change within the system is the difference between the final and the initial states in the system. The entropy change in the given chemical reaction is as follows,

ΔS = Number of products – Number of reactants

Enthalpy:

The enthalpy change for the reaction is determined by bond breaks and bond formation in the reaction.

ΔΗ (Enthalpy), ΔS (Entropy) and ΔG (Gibbs free energy) can be identified by using formula.

ΔΗ (Enthalpy) could be determined by using following formula

ΔΗ (Enthalpy of the reaction) = ΔΗ (bonds broken) – ΔΗ (bonds formed)

Gibbs free energy: The Gibbs free energy depends on the two terms entropy change and the enthalpy change which is affected by the temperature.

General formula to calculate the Gibbs free energy is ΔG = ΔΗ –TΔS

When the heat energy was absorbed by the system from the surrounding is called endothermic reaction

When heat energy or light energy was unconfined to the surrounding from the system is called exothermic reaction.

Equilibrium constant: It is defined as the ratio of concentration of product with respect to the reactant. The value of Keq determines the side in which the given reaction favors.

(c)

Interpretation Introduction

Interpretation:

For the given set of conditions the reaction favors reactant or product side should be identified.

Concept introduction:

Entropy: It is usually defined as the degree of the randomness or disorder present in the respective system.

The total entropy change associated with given reaction is equal to the sum of both entropy change associated with the system and the surrounding.

The entropy change within the system is the difference between the final and the initial states in the system. The entropy change in the given chemical reaction is as follows,

ΔS = Number of products – Number of reactants

Enthalpy:

The enthalpy change for the reaction is determined by bond breaks and bond formation in the reaction.

ΔΗ (Enthalpy), ΔS (Entropy) and ΔG (Gibbs free energy) can be identified by using formula.

ΔΗ (Enthalpy) could be determined by using following formula

ΔΗ (Enthalpy of the reaction) = ΔΗ (bonds broken) – ΔΗ (bonds formed)

Gibbs free energy: The Gibbs free energy depends on the two terms entropy change and the enthalpy change which is affected by the temperature.

General formula to calculate the Gibbs free energy is ΔG = ΔΗ –TΔS

When the heat energy was absorbed by the system from the surrounding is called endothermic reaction

When heat energy or light energy was unconfined to the surrounding from the system is called exothermic reaction.

Equilibrium constant: It is defined as the ratio of concentration of product with respect to the reactant. The value of Keq determines the side in which the given reaction favors.

(d)

Interpretation Introduction

Interpretation:

For the given set of conditions the reaction favors reactant or product side should be identified.

Concept introduction:

Entropy: It is usually defined as the degree of the randomness or disorder present in the respective system.

The total entropy change associated with given reaction is equal to the sum of both entropy change associated with the system and the surrounding.

The entropy change within the system is the difference between the final and the initial states in the system. The entropy change in the given chemical reaction is as follows,

ΔS = Number of products – Number of reactants

Enthalpy:

The enthalpy change for the reaction is determined by bond breaks and bond formation in the reaction.

ΔΗ (Enthalpy), ΔS (Entropy) and ΔG (Gibbs free energy) can be identified by using formula.

ΔΗ (Enthalpy) could be determined by using following formula

ΔΗ (Enthalpy of the reaction) = ΔΗ (bonds broken) – ΔΗ (bonds formed)

Gibbs free energy: The Gibbs free energy depends on the two terms entropy change and the enthalpy change which is affected by the temperature.

General formula to calculate the Gibbs free energy is ΔG = ΔΗ –TΔS

When the heat energy was absorbed by the system from the surrounding is called endothermic reaction

When heat energy or light energy was unconfined to the surrounding from the system is called exothermic reaction.

Equilibrium constant: It is defined as the ratio of concentration of product with respect to the reactant. The value of Keq determines the side in which the given reaction favors.

(e)

Interpretation Introduction

Interpretation:

For the given set of conditions the reaction favors reactant or product side should be identified.

Concept introduction:

Entropy: It is usually defined as the degree of the randomness or disorder present in the respective system.

The total entropy change associated with given reaction is equal to the sum of both entropy change associated with the system and the surrounding.

The entropy change within the system is the difference between the final and the initial states in the system. The entropy change in the given chemical reaction is as follows,

ΔS = Number of products – Number of reactants

Enthalpy:

The enthalpy change for the reaction is determined by bond breaks and bond formation in the reaction.

ΔΗ (Enthalpy), ΔS (Entropy) and ΔG (Gibbs free energy) can be identified by using formula.

ΔΗ (Enthalpy) could be determined by using following formula

ΔΗ (Enthalpy of the reaction) = ΔΗ (bonds broken) – ΔΗ (bonds formed)

Gibbs free energy: The Gibbs free energy depends on the two terms entropy change and the enthalpy change which is affected by the temperature.

General formula to calculate the Gibbs free energy is ΔG = ΔΗ –TΔS

When the heat energy was absorbed by the system from the surrounding is called endothermic reaction

When heat energy or light energy was unconfined to the surrounding from the system is called exothermic reaction.

Equilibrium constant: It is defined as the ratio of concentration of product with respect to the reactant. The value of Keq determines the side in which the given reaction favors.

Blurred answer
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Text book image
Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education
Text book image
Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning
Text book image
Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education
Text book image
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY