(a)
Interpretation:
For the given set of reaction conditions the sign of
Concept introduction:
Gibbs free energy: The Gibbs free energy depends on the two terms entropy change and the enthalpy change which is affected by the temperature.
General formula to calculate the Gibbs free energy is
When the heat energy was absorbed by the system from the surrounding is called endothermic reaction
When heat energy or light energy was unconfined to the surrounding from the system is called exothermic reaction.
Entropy: It is usually defined as the degree of the randomness or disorder present in the respective system.
The total entropy change associated with given reaction is equal to the sum of both entropy change associated with the system and the surrounding.
The entropy change within the system is the difference between the final and the initial states in the system. The entropy change in the given
Enthalpy:
The enthalpy change for the reaction is determined by bond breaks and bond formation in the reaction.
(b)
Interpretation:
For the given set of reaction conditions the sign of
Concept introduction:
Gibbs free energy: The Gibbs free energy depends on the two terms entropy change and the enthalpy change which is affected by the temperature.
General formula to calculate the Gibbs free energy is
When the heat energy was absorbed by the system from the surrounding is called endothermic reaction
When heat energy or light energy was unconfined to the surrounding from the system is called exothermic reaction.
Entropy: It is usually defined as the degree of the randomness or disorder present in the respective system.
The total entropy change associated with given reaction is equal to the sum of both entropy change associated with the system and the surrounding.
The entropy change within the system is the difference between the final and the initial states in the system. The entropy change in the given chemical reaction is as follows
Enthalpy:
The enthalpy change for the reaction is determined by bond breaks and bond formation in the reaction.
(c)
Interpretation:
For the given set of reaction conditions the sign of
Concept introduction:
Gibbs free energy: The Gibbs free energy depends on the two terms entropy change and the enthalpy change which is affected by the temperature.
General formula to calculate the Gibbs free energy is
When the heat energy was absorbed by the system from the surrounding is called endothermic reaction
When heat energy or light energy was unconfined to the surrounding from the system is called exothermic reaction.
Entropy: It is usually defined as the degree of the randomness or disorder present in the respective system.
The total entropy change associated with given reaction is equal to the sum of both entropy change associated with the system and the surrounding.
The entropy change within the system is the difference between the final and the initial states in the system. The entropy change in the given chemical reaction is as follows
Enthalpy:
The enthalpy change for the reaction is determined by bond breaks and bond formation in the reaction.
(d)
Interpretation:
For the given set of reaction conditions the sign of
Concept introduction:
Gibbs free energy: The Gibbs free energy depends on the two terms entropy change and the enthalpy change which is affected by the temperature.
General formula to calculate the Gibbs free energy is
When the heat energy was absorbed by the system from the surrounding is called endothermic reaction
When heat energy or light energy was unconfined to the surrounding from the system is called exothermic reaction.
Entropy: It is usually defined as the degree of the randomness or disorder present in the respective system.
The total entropy change associated with given reaction is equal to the sum of both entropy change associated with the system and the surrounding.
The entropy change within the system is the difference between the final and the initial states in the system. The entropy change in the given chemical reaction is as follows
Enthalpy:
The enthalpy change for the reaction is determined by bond breaks and bond formation in the reaction.
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Organic Chemistry
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY