Vector Mechanics for Engineers: Statics
12th Edition
ISBN: 9781260501735
Author: BEER
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6.4, Problem 6.144P
The gear-pulling assembly shown consists of a crosshead CF, two grip arms ABC and FGH, two links BD and EG, and a threaded center rod JK. Knowing that the center rod JK must exert a 4800-N force on the vertical shaft KL in order to start the removal of the gear, determine all forces acting on grip arm ABC. Assume that the rounded ends of the crosshead are smooth and exert horizontal forces only on the grip arms.
Fig. P6.144
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4.
For the clamping wrench shown, calculate the force required to squeeze the handles
together at GH.
Clamping
force
of 100 lb
A
8
3
B
/21/2
D
4
6
G
†H
NAME
Question 1 (6/20)
ANSWER ON THE YELLOW PAGES
The nose wheel of the landing gear of an aircraft is extended and retracted by applying a torque M to the rod
BC by means of an shaft located at point B. The rod AO, on which the landing wheel is also located, has a
combined mass of 100 kg which may be simplified to a point force at point G. The masses of the bars CD and
BC may be neglected.
If the point D is located underneath point B, the rod CD is at an angle of 30° to the vertical y-axis. At this position
the landing gear should be kept stationary, dynamic effects may therefore be neglected.
All components are made out of stainless steel with max=200 MPa and Imax = 75 MPa.
ALO
d.
800 mm
400
mm
200 mm
B
300
D
M
500 mm
OC
500 mm
A
D
Questions, also draw all relevant free-body diagrams:
a. Calculate the magnitude of the reaction force at point A.
b. Calculate the minimum diameter of the pin in point A. The connection in point A is realized as shown
on the right figure. Use a safety…
A vertical force of 50 lb acts on the crank. Determine the horizontal equilibrium force P that must be applied to the shank and to the x, y, z reaction components in the plain bearing A and the thrust bearing B. The bearings are correctly aligned and exert only reaction forces on the shaft.
Chapter 6 Solutions
Vector Mechanics for Engineers: Statics
Ch. 6.1 - Using the method of joints, determine the force in...Ch. 6.1 - Using the method of joints, determine the force in...Ch. 6.1 - Using the method of joints, determine the force in...Ch. 6.1 - Using the method of joints, determine the force in...Ch. 6.1 - Using the method of joints, determine the force in...Ch. 6.1 - Using the method of joints, determine the force in...Ch. 6.1 - Using the method of joints, determine the force in...Ch. 6.1 - Using the method of joints, determine the force in...Ch. 6.1 - Using the method of joints, determine the force in...Ch. 6.1 - Determine the force in each member of the truss...
Ch. 6.1 - Determine the force in each member of the Gambrel...Ch. 6.1 - Determine the force in each member of the Howe...Ch. 6.1 - Using the method of joints, determine the force in...Ch. 6.1 - Prob. 6.14PCh. 6.1 - Determine the force in each member of the Warren...Ch. 6.1 - Solve Problem 6.15 assuming that the load applied...Ch. 6.1 - Determine the force in each member of the Pratt...Ch. 6.1 - The truss shown is one of several supporting an...Ch. 6.1 - Determine the force in each member of the Pratt...Ch. 6.1 - Solve Problem 6.19 assuming that the load applied...Ch. 6.1 - Determine the force in each of the members located...Ch. 6.1 - Determine the force in member DE and in each of...Ch. 6.1 - Determine the force in each of the members located...Ch. 6.1 - The portion of truss shown represents the upper...Ch. 6.1 - For the tower and loading of Prob. 6.24 and...Ch. 6.1 - Solve Problem 6.24 assuming that the cables...Ch. 6.1 - Determine the force in each member of the truss...Ch. 6.1 - Determine the force in each member of the truss...Ch. 6.1 - Determine whether the trusses of Problems 6.31a,...Ch. 6.1 - Determine whether the trusses of Problems 6.31b,...Ch. 6.1 - For the given loading, determine the zero-force...Ch. 6.1 - For the given loading, determine the zero-force...Ch. 6.1 - For the given loading, determine the zero-force...Ch. 6.1 - Determine the zero-force members in the truss of...Ch. 6.1 - The truss shown consists of six members and is...Ch. 6.1 - The truss shown consists of six members and is...Ch. 6.1 - The truss shown consists of six members and is...Ch. 6.1 - Prob. 6.38PCh. 6.1 - The truss shown consists of nine members and is...Ch. 6.1 - Solve Prob. 6.39 for P = 0 and Q = (900 N)k. 6.39...Ch. 6.1 - The truss shown consists of 18 members and is...Ch. 6.1 - The truss shown consists of 18 members and is...Ch. 6.2 - Determine the force in members BD and DE of the...Ch. 6.2 - Determine the force in members DG and EG of the...Ch. 6.2 - Determine the force in members BD and CD of the...Ch. 6.2 - Determine the force in members DF and DG of the...Ch. 6.2 - A floor truss is loaded as shown. Determine the...Ch. 6.2 - A floor truss is loaded as shown. Determine the...Ch. 6.2 - Determine the force in members CD and DF of the...Ch. 6.2 - Determine the force in members CE and EF of the...Ch. 6.2 - Determine the force in members DE and DF of the...Ch. 6.2 - Determine the force in members EG and EF of the...Ch. 6.2 - Determine the force in members DF and DE of the...Ch. 6.2 - Determine the force in members CD and CE of the...Ch. 6.2 - A Pratt roof truss is loaded as shown. Determine...Ch. 6.2 - A Pratt roof truss is loaded as shown. Determine...Ch. 6.2 - A Howe scissors roof truss is loaded as shown....Ch. 6.2 - A Howe scissors roof truss is loaded as shown....Ch. 6.2 - Determine the force in members AD, CD, and CE of...Ch. 6.2 - Determine the force in members DG, FG, and FH of...Ch. 6.2 - Determine the force in member GJ of the truss...Ch. 6.2 - Determine the force in members DG and FH of the...Ch. 6.2 - Prob. 6.63PCh. 6.2 - Prob. 6.64PCh. 6.2 - The diagonal members in the center panels of the...Ch. 6.2 - The diagonal members in the center panels of the...Ch. 6.2 - The diagonal members in the center panels of the...Ch. 6.2 - Solve Prob. 6.67 assuming that the 9-kip load has...Ch. 6.2 - Classify each of the structures shown as...Ch. 6.2 - Classify each of the structures shown as...Ch. 6.2 - 6.70 through 6.74 classify as determinate or...Ch. 6.2 - 6.70 through 6.74 classify as determinate or...Ch. 6.2 - 6.70 through 6.74 classify as determinate or...Ch. 6.2 - 6.70 through 6.74 classify as determinate or...Ch. 6.3 - For the frame and loading shown, draw the...Ch. 6.3 - For the frame and loading shown, draw the...Ch. 6.3 - Draw the free-body diagram(s) needed to determine...Ch. 6.3 - Knowing that the pulley has a radius of 0.5 m,...Ch. 6.3 - and 6.76 Determine the force in member BD and the...Ch. 6.3 - Prob. 6.76PCh. 6.3 - For the frame and loading shown, determine the...Ch. 6.3 - Determine the components of all forces acting on...Ch. 6.3 - The hydraulic cylinder CF, which partially...Ch. 6.3 - The hydraulic cylinder CF, which partially...Ch. 6.3 - Determine the components of all forces acting on...Ch. 6.3 - Determine the components of all forces acting on...Ch. 6.3 - Determine the components of the reactions at A and...Ch. 6.3 - Determine the components of the reactions at D and...Ch. 6.3 - Determine the components of the reactions at A and...Ch. 6.3 - Determine the components of the reactions at A and...Ch. 6.3 - Determine the components of the reactions at A and...Ch. 6.3 - The 48-lb load can be moved along the line of...Ch. 6.3 - The 48-lb load is removed and a 288-lb in....Ch. 6.3 - (a) Show that, when a frame supports a pulley at...Ch. 6.3 - Knowing that each pulley has a radius of 250 mm,...Ch. 6.3 - Knowing that the pulley has a radius of 75 mm,...Ch. 6.3 - Prob. 6.93PCh. 6.3 - Prob. 6.94PCh. 6.3 - A trailer weighing 2400 lb is attached to a...Ch. 6.3 - In order to obtain a better weight distribution...Ch. 6.3 - The cab and motor units of the front-end loader...Ch. 6.3 - Solve Problem 6.97 assuming that the 75-kN load...Ch. 6.3 - Knowing that P = 90 lb and Q = 60 lb, determine...Ch. 6.3 - Knowing that P = 90 lb and Q = 60 lb, determine...Ch. 6.3 - For the frame and loading shown, determine the...Ch. 6.3 - For the frame and loading shown, determine the...Ch. 6.3 - Prob. 6.103PCh. 6.3 - Prob. 6.104PCh. 6.3 - For the frame and loading shown, determine the...Ch. 6.3 - Solve Prob. 6.105 assuming that the 6-kN load has...Ch. 6.3 - The axis of the three-hinge arch ABC is a parabola...Ch. 6.3 - The axis of the three-hinge arch ABC is a parabola...Ch. 6.3 - 6.109 and 6.110 Neglecting the effect of friction...Ch. 6.3 - and 6.110 Neglecting the effect of friction at the...Ch. 6.3 - 6.111, 6.112, and 6.113 Members ABC and CDE are...Ch. 6.3 - 6.111, 6.112, and 6.113 Members ABC and CDE are...Ch. 6.3 - 6.111, 6.112, and 6.113 Members ABC and CDE are...Ch. 6.3 - Members ABC and CDE are pin-connected at C and...Ch. 6.3 - Solve Prob. 6.112 assuming that the force P is...Ch. 6.3 - Solve Prob. 6.114 assuming that the force P is...Ch. 6.3 - Four beams, each with a length of 2a, are nailed...Ch. 6.3 - Four beams, each with a length of 3a, are held...Ch. 6.3 - 6.119 through 6.121 Each of the frames shown...Ch. 6.3 - 6.119 through 6.121 Each of the frames shown...Ch. 6.3 - 6.119 through 6.121 Each of the frames shown...Ch. 6.4 - An 84-lb force is applied to the toggle vise at C....Ch. 6.4 - For the system and loading shown, draw the...Ch. 6.4 - A small barrel weighing 60 lb is lifted by a pair...Ch. 6.4 - The position of member ABC is controlled by the...Ch. 6.4 - The shear shown is used to cut and trim...Ch. 6.4 - A 100-lb force directed vertically downward is...Ch. 6.4 - Prob. 6.124PCh. 6.4 - The control rod CE passes through a horizontal...Ch. 6.4 - Solve Prob. 6.125 when (a) = 0, (b) = 6. Fig....Ch. 6.4 - The press shown is used to emboss a small seal at...Ch. 6.4 - The press shown is used to emboss a small seal at...Ch. 6.4 - The pin at B is attached to member ABC and can...Ch. 6.4 - The pin at B is attached to member ABC and can...Ch. 6.4 - Arm ABC is connected by pins to a collar at B and...Ch. 6.4 - Arm ABC is connected by pins to a collar at B and...Ch. 6.4 - The Whitworth mechanism shown is used to produce a...Ch. 6.4 - Solve Prob. 6.133 when (a) = 60, (b) = 90. Fig....Ch. 6.4 - and 6.136 Two rods are connected by a slider block...Ch. 6.4 - and 6.136 Two rods are connected by a slider block...Ch. 6.4 - 6.137 and 6.138 Rod CD is attached to the collar D...Ch. 6.4 - 6.137 and 6.138 Rod CD is attached to the collar D...Ch. 6.4 - Two hydraulic cylinders control the position of...Ch. 6.4 - Two hydraulic cylinders control the position of...Ch. 6.4 - A steel ingot weighing 8000 lb is lifted by a pair...Ch. 6.4 - If the toggle shown is added to the tongs of Prob....Ch. 6.4 - A 9-m length of railroad rail of mass 40 kg/m is...Ch. 6.4 - The gear-pulling assembly shown consists of a...Ch. 6.4 - The pliers shown are used to grip a...Ch. 6.4 - Prob. 6.146PCh. 6.4 - In using the bolt cutter shown, a worker applies...Ch. 6.4 - The upper blade and lower handle of the...Ch. 6.4 - and 6.150 Determine the force P that must be...Ch. 6.4 - and 6.150 Determine the force P that must be...Ch. 6.4 - Because the brace shown must remain in position...Ch. 6.4 - The specialized plumbing wrench shown is used in...Ch. 6.4 - Prob. 6.153PCh. 6.4 - For the frame and loading shown, determine the...Ch. 6.4 - The telescoping arm ABC is used to provide an...Ch. 6.4 - The telescoping arm ABC of Prob. 6.155 can be...Ch. 6.4 - The motion of the backhoe bucket shown is...Ch. 6.4 - Solve Prob. 6.157 assuming that the 2-kip force P...Ch. 6.4 - The gears A and D are rigidly attached to...Ch. 6.4 - In the planetary gear system shown, the radius of...Ch. 6.4 - Two shafts AC and CF, which lie in the vertical xy...Ch. 6.4 - Two shafts AC and CF, which lie in the vertical xy...Ch. 6.4 - The large mechanical tongs shown are used to grab...Ch. 6 - Using the method of joints, determine the force in...Ch. 6 - Using the method of joints, determine the force in...Ch. 6 - A stadium roof truss is loaded as shown. Determine...Ch. 6 - A stadium roof truss is loaded as shown. Determine...Ch. 6 - Determine the components of all forces acting on...Ch. 6 - Determine the components of the reactions at A and...Ch. 6 - Knowing that the pulley has a radius of 50 mm,...Ch. 6 - For the frame and loading shown, determine the...Ch. 6 - For the frame and loading shown, determine the...Ch. 6 - Water pressure in the supply system exerts a...Ch. 6 - A couple M with a magnitude of 1.5 kNm is applied...Ch. 6 - The compound-lever pruning shears shown can be...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- ed While tapping a hole, a machinist applies the horizontal forces shown, P= 3.4 lb and Q=3.15 lb, to the handle of the tap wrench. Show that these forces are equivalent to a single force, and specify, if possible, the point of application of the single force on the handle. 25 in The single force is applied on an extension of handle BD at a distance of 78.24in. to the right of B.arrow_forwardPulley A delivers a steady torque of 1100 lb-in. To a pump through its shaft at C. The tension in the lower side of the belt is 165 lb. The driving motor weighs 200 lb and rotates clockwise. Determine the bearing reaction force at O. A 9" B 30° 37 8" 150 lb - 5"-- 5"-arrow_forwardThe homogeneous 25 kg bar AB is supported by a ball-and-socket joint A. End B, which leans against a frinctionless vertical wall ,is kep from sliding by the horizontal force D. Determine P and the force exerted by the wall at B.arrow_forward
- Problem 8 Another Gear Two disks are connected to one another with a belt as shown. Both disks have mass m but the larger one has radius 4R and the smaller has radius R. The larger disk is powered by a motor that produces a constant torque, To, in the counter- clockwise direction. (a) By using the rotational equivalent of Newton's laws on the larger disk show that the difference in the tension at the top with the tension at the bottom is: Tto - Thot 1 4R (TO - 2m Ra), where a is the linear accleration of the elt. (b) Do the same (find Ttop - Tbot) with the smaller disk. (c) Use your two expressions to find the gular acceleration of the smaller disk. You answer should have m, R, and To in it only. (Careful, the sr aller disk does not have the same angular acceleration as the larger one).arrow_forwardThe hand brake for a bicycle is shown. Portions DE and FG are free to rotate on bolt A which is screwed into the frame BC of the bicycle. The brake is actuated by a shielded cable where T1 is applied to point E and T2 is applied to point G. A spring having 40 N compressive force is placed between points E and G so that the brake stays open when it is not being used. Assume the change in the spring's force is negligible when the brake is actuated to produce the F = 100 N forces at points D and F. Determine the necessary cable forces T1 in N.arrow_forwardLet us model the illustrated crusher as a planar mechanism that is subjected to the pushing force P on the lower "L-shaped" handle, i.e. link CDE. Note that link CDE is one solid piece, pinned at D and E. Knowing that the orange horizontal member AB has a square peg at A that slides vertically in the slot on the blue frame, that the can is centered under the pin at B and that P = 60 N, 0 = 15°, 6 = 10°, a = 60 mm, b = 230 mm, c = 60 mm, and d = 25 mm, determine the force magnitude F in N exerted on the can from the mechanism. F = d A Probably the l loger in th N arls rg a B E b P Carrow_forward
- The round stepped shaft (diameters d and D) shown below is a design for an exoplanet rover wheel axle. Assuming the wheel is stuck, a torque from the motor is transmitted to the axle but it is not rotating. The reaction of the weight of the rover on the ground and the torque the wheel applies to the ground are represented by the force F acting in the center of the wheel hub (not shown) at point C. There is a sharp fillet at B with radius r shown below. Bearings are shown at point A and next to point B. You may assume the bearing at B resists the bending moment caused by the force F and acts like a fixed reaction. В A L2 L1 T L3 - ØD Ød R. r F SUBMIT ANSWERS HERE: Paramete Parameter Value Value SUT (tension) 400 MPa | L1 400 mm Suc (Compression) 600 Мра L2 200 mm Sy 380 MPа L3 100 mm 600 N-m ø d 40 mm F 0.2 kN ø D 55 mm R. r 8 mmarrow_forwardThe compound lever pruners shown in the figure can be adjusted by means of bolt A in various ratcheting positions on the ACE blade. Knowing that the length AB is 0.85 in, determine the forces exerted on each of the elements that make up the clippers.Make the required free-body diagram (s) of the elements and place the corresponding directions of the forces in each of the diagrams.arrow_forwardThe blade of the bulldozer shown below is rigidly attached to a linkage consisting of the arm AB, which is controlled by the hydraulic cylinder BC. There is an identical linkage on the other side of the bulldozer. Applied loads shown are for both linkages and F = 656 kN. (a) Determine the magnitude of the pin reaction at A in kN. (b) Determine the magnitude of the pin reaction at B in kN. (c) Determine the magnitude of the pin reaction at C in kN.arrow_forward
- The homogeneous 240-lb bar is supported by a rough horizontal surface at A, a smooth vertical surface at B, and the cable BC. Draw the FBD of the bar and count the unknowns.arrow_forwardA mechanic is reinstalling a newly-sharpened blade on a lawn mower. A wedged-in block of wood at C prevents the blade from rotating as the 22-lb force is applied to the wrench handle. The blade is bolted to a bracket attached to the motor shaft O, which protrudes through the bracket and blade. Determine the normal force at C. State any assumptions. Does it matter whether the bolt at B is installed? 6.4" 22 lb Answer: Nc= 2.02.0" DOB 9.4" lbarrow_forwardA block placed under the head of the claw hammer as shown greatly facilitates the extraction of the nail. If a 40-lb pull on the handle is required to pull the nail, calculate the tension T in the nail and the magnitude A of the force exerted by the hammer head on the block. The contacting surfaces at A are sufficiently rough to prevent slipping. T=? Lb. A=?Lb.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Types Of loads - Engineering Mechanics | Abhishek Explained; Author: Prime Course;https://www.youtube.com/watch?v=4JVoL9wb5yM;License: Standard YouTube License, CC-BY