College Majors Table 4 shows the probable field of study for 1500 freshman males and 1000 freshman females. Find the probability that a freshman selected at random a. intends to major in business. b. is female. c. is a female intending to major in business. d. is male, given that the freshman intends to major in social science. e. intends to major in social science, given that the freshman is female. Table 4 Business Social Science Other Total Male Female Total 260 102 362 122 130 252 1118 768 1886 1500 1000 2500 Source: www.heri.ucla.edu
College Majors Table 4 shows the probable field of study for 1500 freshman males and 1000 freshman females. Find the probability that a freshman selected at random a. intends to major in business. b. is female. c. is a female intending to major in business. d. is male, given that the freshman intends to major in social science. e. intends to major in social science, given that the freshman is female. Table 4 Business Social Science Other Total Male Female Total 260 102 362 122 130 252 1118 768 1886 1500 1000 2500 Source: www.heri.ucla.edu
Solution Summary: The author calculates the probability that a randomly selected freshman wants to major in business with the help of the following table.
College Majors Table 4 shows the probable field of study for 1500 freshman males and 1000 freshman females. Find the probability that a freshman selected at random
a. intends to major in business.
b. is female.
c. is a female intending to major in business.
d. is male, given that the freshman intends to major in social science.
e. intends to major in social science, given that the freshman is female.
A: Tan Latitude / Tan P
A = Tan 04° 30'/ Tan 77° 50.3'
A= 0.016960 803 S CA named opposite to latitude,
except when hour angle between 090° and 270°)
B: Tan Declination | Sin P
B Tan 052° 42.1'/ Sin 77° 50.3'
B = 1.34 2905601 SCB is alway named same as
declination)
C = A + B = 1.35 9866404 S CC correction, A+/- B:
if A and B have same name - add, If
different name- subtract)
=
Tan Azimuth 1/Ccx cos Latitude)
Tan Azimuth = 0.737640253
Azimuth
=
S 36.4° E CAzimuth takes combined
name of C correction and Hour Angle - If LHA
is between 0° and 180°, it is named "west", if
LHA is between 180° and 360° it is named "east"
True Azimuth= 143.6°
Compass Azimuth = 145.0°
Compass Error = 1.4° West
Variation 4.0 East
Deviation: 5.4 West
A: Tan Latitude / Tan P
A = Tan 04° 30'/ Tan 77° 50.3'
A= 0.016960 803 S CA named opposite to latitude,
except when hour angle between 090° and 270°)
B: Tan Declination | Sin P
B Tan 052° 42.1'/ Sin 77° 50.3'
B = 1.34 2905601 SCB is alway named same as
declination)
C = A + B = 1.35 9866404 S CC correction, A+/- B:
if A and B have same name - add, If
different name- subtract)
=
Tan Azimuth 1/Ccx cos Latitude)
Tan Azimuth = 0.737640253
Azimuth
=
S 36.4° E CAzimuth takes combined
name of C correction and Hour Angle - If LHA
is between 0° and 180°, it is named "west", if
LHA is between 180° and 360° it is named "east"
True Azimuth= 143.6°
Compass Azimuth = 145.0°
Compass Error = 1.4° West
Variation 4.0 East
Deviation: 5.4 West
Direction: Strictly write in 4 bond paper, because my activity
sheet is have 4 spaces. This is actually for maritime.
industry course, but I think geometry can do this.
use nautical almanac.
Sample Calculation (Amplitude- Sun):
On 07th May 2006 at Sunset, a vesel in position 10°00'N
0 10°00' W observed the sun bearing 288° by compass. Find
the
compass error.
LMT Sunset
07d
18h
13m
(+)00d
00h
40 м
LIT:
UTC Sunset:
07d
18h
53 m
added - since
longitude is
westerly
Declination Co7d 18h): N016° 55.5'
d(0.7):
(+)
00-6
N016 56.1'
Declination Sun:
Sin Amplitude Sin Declination (Los Latitude
- Sin 016° 56.1'/Cos 10°00'
= 0.295780189
Amplitude = WI. 2N (The prefix of amplitude is
named easterly if body is rising.
and westerly of body is setting.
The suffix is named came as
declination.)
True Bearing: 287.20
Compass Bearing
288.0°
Compass Error: 0.8' West
Chapter 6 Solutions
Finite Mathematics & Its Applications (12th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Continuous Probability Distributions - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=QxqxdQ_g2uw;License: Standard YouTube License, CC-BY
Probability Density Function (p.d.f.) Finding k (Part 1) | ExamSolutions; Author: ExamSolutions;https://www.youtube.com/watch?v=RsuS2ehsTDM;License: Standard YouTube License, CC-BY
Find the value of k so that the Function is a Probability Density Function; Author: The Math Sorcerer;https://www.youtube.com/watch?v=QqoCZWrVnbA;License: Standard Youtube License