Calculus, Early Transcendentals
9th Edition
ISBN: 9781337613927
Author: Stewart
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6.4, Problem 13E
Show how to approximate the required work by a Riemann sum. Then express the work as an
A heavy rope, 50 ft long, weighs 0.5 lb/ft and hangs over the edge of a building 120 ft high.
(a) How much work is done in pulling the rope to the top of the building?
(b) How much work is done in pulling half the rope to the top of the building?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Calculus, Early Transcendentals
Ch. 6.1 - (a) Set up an integral for the area of the shaded...Ch. 6.1 - (a) Set up an integral for the area of the shaded...Ch. 6.1 - Find the area of the shaded region.Ch. 6.1 - Find the area of the shaded region.Ch. 6.1 - Find the area of the shaded region. 5.Ch. 6.1 - Find the area of the shaded region. 6.Ch. 6.1 - Set up, but do not evaluate, an integral...Ch. 6.1 - Prob. 8ECh. 6.1 - Set up, but do not evaluate, an integral...Ch. 6.1 - Set up, but do not evaluate, an integral...
Ch. 6.1 - Sketch the region enclosed by the given curves....Ch. 6.1 - Prob. 12ECh. 6.1 - Sketch the region enclosed by the given curves....Ch. 6.1 - Sketch the region enclosed by the given curves....Ch. 6.1 - Sketch the region enclosed by the given curves....Ch. 6.1 - Sketch the region enclosed by the given curves....Ch. 6.1 - Sketch the region enclosed by the given curves....Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Prob. 32ECh. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Prob. 37ECh. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Sketch the region enclosed by the given curves and...Ch. 6.1 - Use calculus to find the area of the triangle with...Ch. 6.1 - Use calculus to find the area of the triangle with...Ch. 6.1 - Evaluate the integral and interpret it as the area...Ch. 6.1 - Evaluate the integral and interpret it as the area...Ch. 6.1 - Use a graph to find approximate x-coordinates of...Ch. 6.1 - Prob. 46ECh. 6.1 - Prob. 47ECh. 6.1 - Prob. 48ECh. 6.1 - Graph the region between the curves and use your...Ch. 6.1 - Prob. 50ECh. 6.1 - Prob. 51ECh. 6.1 - Prob. 52ECh. 6.1 - Sketch the region in the xy-plane defined by the...Ch. 6.1 - Racing cars driven by Chris and Kelly are side by...Ch. 6.1 - The widths (in meters) of a kidney-shaped swimming...Ch. 6.1 - A cross-section of an airplane wing is shown....Ch. 6.1 - If the birth rate of a population is b(t) =...Ch. 6.1 - Prob. 60ECh. 6.1 - Two cars, A and B, start side by side and...Ch. 6.1 - The figure shows graphs of the marginal revenue...Ch. 6.1 - The curve with equation y2 = x2(x + 3) is called...Ch. 6.1 - Find the area of the region bounded by the...Ch. 6.1 - Find the number b such that the line y = b divides...Ch. 6.1 - (a) Find the number a such that the line x = a...Ch. 6.1 - Find the values of c such that the area of the...Ch. 6.1 - Suppose that 0 c /2. For what value of c is the...Ch. 6.1 - For what values of m do the line y = mx and the...Ch. 6.2 - Prob. 7ECh. 6.2 - Set up, but do not evaluate, an integral for the...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Find the volume of the solid obtained by rotating...Ch. 6.2 - Refer to the figure and find the volume generated...Ch. 6.2 - Refer to the figure and find the volume generated...Ch. 6.2 - Refer to the figure and find the volume generated...Ch. 6.2 - Refer to the figure and find the volume generated...Ch. 6.2 - Refer to the figure and find the volume generated...Ch. 6.2 - Refer to the figure and find the volume generated...Ch. 6.2 - Refer to the figure and find the volume generated...Ch. 6.2 - Refer to the figure and find the volume generated...Ch. 6.2 - Refer to the figure and find the volume generated...Ch. 6.2 - Refer to the figure and find the volume generated...Ch. 6.2 - Refer to the figure and find the volume generated...Ch. 6.2 - Refer to the figure and find the volume generated...Ch. 6.2 - Set up an integral for the volume of the solid...Ch. 6.2 - Set up an integral for the volume of the solid...Ch. 6.2 - Set up an integral for the volume of the solid...Ch. 6.2 - Set up an integral for the volume of the solid...Ch. 6.2 - Use a graph to find approximate x-coordinates of...Ch. 6.2 - Use a graph to find approximate x-coordinates of...Ch. 6.2 - Prob. 49ECh. 6.2 - Prob. 50ECh. 6.2 - Prob. 51ECh. 6.2 - Each integral represents the volume of a solid....Ch. 6.2 - Prob. 53ECh. 6.2 - Each integral represents the volume of a solid....Ch. 6.2 - A log 10 m long is cut at 1-meter intervals and...Ch. 6.2 - (a) If the region shown in the figure is rotated...Ch. 6.2 - Find the volume of the described solid S. A right...Ch. 6.2 - Find the volume of the described solid S. A...Ch. 6.2 - Find the volume of the described solid S. A cap of...Ch. 6.2 - Find the volume of the described solid S. A...Ch. 6.2 - Find the volume of the described solid S. A...Ch. 6.2 - Find the volume of the described solid S. A...Ch. 6.2 - Find the volume of the described solid S. A...Ch. 6.2 - Find the volume of the described solid S. The base...Ch. 6.2 - Find the volume of the described solid S. The base...Ch. 6.2 - Find the volume of the described solid S. The base...Ch. 6.2 - Find the volume of the described solid S. The base...Ch. 6.2 - Find the volume of the described solid S. The base...Ch. 6.2 - Find the volume of the described solid S. The base...Ch. 6.2 - Find the volume of the described solid S. The base...Ch. 6.2 - Find the volume of the described solid S. The...Ch. 6.2 - (a) Set up an integral for the volume of a solid...Ch. 6.2 - Prob. 77ECh. 6.2 - Find the volume common to two circular cylinders,...Ch. 6.2 - Prob. 81ECh. 6.2 - A bowl is shaped like a hemisphere with diameter...Ch. 6.2 - A hole of radius r is bored through the middle of...Ch. 6.2 - A hole of radius r is bored through the center of...Ch. 6.2 - Some of the pioneers of calculus, such as Kepler...Ch. 6.2 - Suppose that a region has area A and lies above...Ch. 6.3 - Let S be the solid obtained by rotating the region...Ch. 6.3 - Let S be the solid obtained by rotating the region...Ch. 6.3 - Set up, but do not evaluate, an integral for the...Ch. 6.3 - Prob. 6ECh. 6.3 - Prob. 7ECh. 6.3 - Prob. 9ECh. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - Use the method of cylindrical shells to find the...Ch. 6.3 - (a) Set up an integral for the volume of the solid...Ch. 6.3 - (a) Set up an integral for the volume of the solid...Ch. 6.3 - (a) Set up an integral for the volume of the solid...Ch. 6.3 - (a) Set up an integral for the volume of the solid...Ch. 6.3 - (a) Set up an integral for the volume of the solid...Ch. 6.3 - (a) Set up an integral for the volume of the solid...Ch. 6.3 - Use the Midpoint Rule with n = 5 to estimate the...Ch. 6.3 - If the region shown in the figure is rotated about...Ch. 6.3 - Prob. 39ECh. 6.3 - Prob. 40ECh. 6.3 - Prob. 41ECh. 6.3 - Prob. 42ECh. 6.3 - Use a graph to estimate the x-coordinates of the...Ch. 6.3 - Prob. 44ECh. 6.3 - The region bounded by the given curves is rotated...Ch. 6.3 - The region bounded by the given curves is rotated...Ch. 6.3 - The region bounded by the given curves is rotated...Ch. 6.3 - The region bounded by the given curves is rotated...Ch. 6.3 - The region bounded by the given curves is rotated...Ch. 6.3 - The region bounded by the given curves is rotated...Ch. 6.3 - The region bounded by the given curves is rotated...Ch. 6.3 - Let T be the triangular region with vertices (0,...Ch. 6.3 - Prob. 61ECh. 6.3 - Use cylindrical shells to find the volume of the...Ch. 6.3 - Use cylindrical shells to find the volume of the...Ch. 6.4 - How much work is done when a weight lifter lifts...Ch. 6.4 - Compute the work done in hoisting an 1100-lb grand...Ch. 6.4 - Prob. 3ECh. 6.4 - A variable force of 4x newtons moves a particle...Ch. 6.4 - Shown is the graph of a force function (in...Ch. 6.4 - Prob. 6ECh. 6.4 - A force of 10 lb is required to hold a spring...Ch. 6.4 - A spring has a natural length of 40 cm. If a 60-N...Ch. 6.4 - Suppose that 2 J of work is needed to stretch a...Ch. 6.4 - If the work required to stretch a spring 1 ft...Ch. 6.4 - A spring has natural length 20 cm. Compare the...Ch. 6.4 - If 6 J of work is needed to stretch a spring from...Ch. 6.4 - Show how to approximate the required work by a...Ch. 6.4 - Show how to approximate the required work by a...Ch. 6.4 - Show how to approximate the required work by a...Ch. 6.4 - Show how to approximate the required work by a...Ch. 6.4 - Show how to approximate the required work by a...Ch. 6.4 - A 0.4-kg model rocket is loaded with 0.75kg of...Ch. 6.4 - Show how to approximate the required work by a...Ch. 6.4 - Show how to approximate the required work by a...Ch. 6.4 - Show how to approximate the required work by a...Ch. 6.4 - Show how to approximate the required work by a...Ch. 6.4 - A tank is full of water. Find the work required to...Ch. 6.4 - A tank is full of water. Find the work required to...Ch. 6.4 - A tank is full of water. Find the work required to...Ch. 6.4 - A tank is full of water. Find the work required to...Ch. 6.4 - Suppose that for the tank in Exercise 23 the pump...Ch. 6.4 - Solve Exercise 24 if the tank is half full of oil...Ch. 6.4 - When gas expands in a cylinder with radius r, the...Ch. 6.4 - In a steam engine the pressure P and volume V of...Ch. 6.4 - Prob. 31ECh. 6.4 - Prob. 32ECh. 6.4 - Work-Energy Theorem The kinetic energy KE of an...Ch. 6.4 - The Great Pyramid of King Khufu was built of...Ch. 6.5 - Find the average value of the function on the...Ch. 6.5 - Find the average value of the function on the...Ch. 6.5 - Find the average value of the function on the...Ch. 6.5 - Find the average value of the function on the...Ch. 6.5 - Prob. 5ECh. 6.5 - Find the average value of the function on the...Ch. 6.5 - Find the average value of the function on the...Ch. 6.5 - Find the average value of the function on the...Ch. 6.5 - If f is continuous and 13f(x)dx=8, show that f...Ch. 6.5 - Find the numbers b such that the average value of...Ch. 6.5 - Find the average value of f on [0, 8].Ch. 6.5 - The velocity graph of an accelerating car is...Ch. 6.5 - In a certain city the temperature (in F) t hours...Ch. 6.5 - The linear density in a rod 8 m long is...Ch. 6.5 - The velocity v of blood that flows in a blood...Ch. 6.5 - In Example 3.8.1 we modeled the world population...Ch. 6.5 - Prob. 23ECh. 6.5 - Use the diagram to show that if f is concave...Ch. 6.5 - Prob. 25ECh. 6.5 - Prob. 26ECh. 6.5 - Prob. 27ECh. 6.5 - Prob. 28ECh. 6 - (a) Draw two typical curves y = f(x) and y = g(x),...Ch. 6 - Suppose that Sue runs faster than Kathy throughout...Ch. 6 - Prob. 3CCCh. 6 - Prob. 4CCCh. 6 - Suppose that you push a book across a 6-meter-long...Ch. 6 - Prob. 6CCCh. 6 - Determine whether the statement is true or false....Ch. 6 - Prob. 2TFQCh. 6 - Prob. 3TFQCh. 6 - Prob. 4TFQCh. 6 - Prob. 5TFQCh. 6 - Prob. 6TFQCh. 6 - Prob. 7TFQCh. 6 - Prob. 8TFQCh. 6 - Prob. 9TFQCh. 6 - A cable hangs vertically from a winch located at...Ch. 6 - Find the area of the region bounded by the given...Ch. 6 - Find the area of the region bounded by the given...Ch. 6 - Prob. 3ECh. 6 - Find the area of the region bounded by the given...Ch. 6 - Find the area of the region bounded by the given...Ch. 6 - Find the area of the region bounded by the given...Ch. 6 - Prob. 7ECh. 6 - Find the volume of the solid obtained by rotating...Ch. 6 - Find the volume of the solid obtained by rotating...Ch. 6 - Find the volume of the solid obtained by rotating...Ch. 6 - Prob. 11ECh. 6 - Set up, but do not evaluate, an integral for the...Ch. 6 - Prob. 13ECh. 6 - Set up, but do not evaluate, an integral for the...Ch. 6 - Find the volumes of the solids obtained by...Ch. 6 - Let be the region in the first quadrant bounded...Ch. 6 - Prob. 19ECh. 6 - Let be the region bounded by the curves y = 1 x2...Ch. 6 - Prob. 21ECh. 6 - Each integral represents the volume of a solid....Ch. 6 - Each integral represents the volume of a solid....Ch. 6 - Each integral represents the volume of a solid....Ch. 6 - The base of a solid is a circular disk with radius...Ch. 6 - The base of a solid is the region bounded by the...Ch. 6 - Prob. 27ECh. 6 - Prob. 28ECh. 6 - Prob. 29ECh. 6 - A 1600-lb elevator is suspended by a 200-ft cable...Ch. 6 - A tank full of water has the shape of a paraboloid...Ch. 6 - A steel tank has the shape of a circular cylinder...Ch. 6 - Prob. 33ECh. 6 - Prob. 34ECh. 6 - Prob. 35ECh. 6 - There is a line through the origin that divides...Ch. 6 - The figure shows a horizontal line y = c...Ch. 6 - A cylindrical glass of radius r and height L is...Ch. 6 - Archimedes Principle states that the buoyant force...Ch. 6 - Prob. 7PPCh. 6 - A paper drinking cup filled with water has the...Ch. 6 - A clepsydra, or water clock, is a glass container...Ch. 6 - A cylindrical container of radius r and height L...Ch. 6 - Prob. 11PPCh. 6 - If the tangent at a point P on the curve y = x3...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- A seamless brass tube and brass flange assembly is shown. The tube is pressed fit into the full 1.250-inch plate thickness. The brass used weighs 0.305 pound per cubic inch. Find the total weight of the assembly. Round the answer to the nearest tenth pound.arrow_forwardA driver of a car stopped at a gas station to fill up his gas tank. He looked at his watch, and the time read exactly 3:40 p.m. At this time, he started pumping gas into the tank. At exactly 3:44, the tank was full and he noticed that he had pumped 10.7 gallons. What is the average rate of flow of the gasoline into the gas tank?arrow_forwardSolve these prism and cylinder exercises. Where necessary, round the answers to 2 decimal places unless otherwise specified. A solid brass casting in the shape of a right circular cone has a base diameter of 4.36 inches and a height of 3.94 inches. Find the weight of the casting. Brass weighs 0.302 pound per cubic inch.arrow_forward
- A piece in the shape of a pyramid with a regular octagon (eight sided) base is machined from a solid block of bronze. Each side of the octagon base is 9.36 inches long. The height of the piece is 7.08 inches. The octagon base area 4.829, where s is the length of a side of the octagon. a. Determine the volume of the piece. Round the answer to the nearest cubic inch. b. Determine the weight of the piece. Round the answer to the nearest pound. Note: One cubic foot of the bronze used weighs 547.9 pounds per cubic foot.arrow_forwardA slot is machined in a circular plate with a 41.36-millimeter diameter. Two milling cuts, one 6.30 millimeters deep and the other 3.15 millimeters, are made. A grinding operation then removes 0.40 millimeter. What is the distance from the center of the plate to the bottom of the slot? All dimensions are in millimeters.arrow_forwardWhen the Radius Increases a. A rope is wrapped tightly around a wheel with radius of 2 feet. If the radius of the wheel is increased by 1 foot to a radius 3 feet, by how much must the rope be lengthened to fit around the wheel? b. Consider a rope wrapped around the Earths equator. We noted in Exercise 17 that the radius of the Earth is about 4000 miles. That is 21,120,000 feet. Suppose now that rope is to be suspended exactly 1 foot above the equator. By how much must the rope be lengthened to accomplish this? The Size of the Earth The radius of the Earth is approximately 4000 miles. a. How far is it around the equator? Hint: You are looking for the circumference of a circle b. What is the volume of the Earth? Hint: The volume of a sphere of radius r is given by 43r3. b. What is the surface area of the Earth? Hint: The surface area of a sphere of radius r is given by 4r2.arrow_forward
- The tin can shown at the right has the indicated dimensions. Estimate the number of square inches of tin required for its construction. HINT: Include the lid and the base in the result.arrow_forwardA zinc casting is in the shape of a frustum of a right circular cone. The larger base area is 280 inches in diameter and the smaller base area is 2.30 inches in diameter. The height is 3.50 inches. Round the answers for a and b to 1 decimal point. a. Compute the volume of the casting. b. Determine the weight of the casting. Zinc weighs 0.256 pound per cubic inch.arrow_forwardSolve these prism and cylinder exercises. Where necessary, round the answers to 2 decimal places unless otherwise specified. The frustum of a right circular cone has a larger base area of 40.0 square centimeters and a smaller base area of 19.0 square centimeters. The height is 22.0 centimeters. Find the volume. Round the answer to the nearest cubic centimeter.arrow_forward
- Solve these exercises. Where necessary, round the answers to 2 decimal places unless otherwise specified. A right circular cone 12.7 centimeters high contains 198.7 cubic centimeters of material. Find the area of the base of the cone. Round the answer to the nearest square centimeter.arrow_forwardThe container is in the shape of a frustum of a right circular cone. The smaller base area is 426 square centimeters and the larger base area is 876 square centimeters. The height is 29.5 centimeters. Compute the capacity of the container in liters. One liter contains 1000 cubic centimeters. Round the answers to the nearest tenth liter.arrow_forwardFind the area of this figure. Round your answer to 2 decimal places.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningElementary Geometry for College StudentsGeometryISBN:9781285195698Author:Daniel C. Alexander, Geralyn M. KoeberleinPublisher:Cengage LearningAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Elementary Geometry for College Students
Geometry
ISBN:9781285195698
Author:Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:Cengage Learning
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY