
Discrete Mathematics With Applications
5th Edition
ISBN: 9781337694193
Author: EPP, Susanna S.
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6.3, Problem 44ES
To determine
(a)
To derive:
Use an element argument to derive the property.
To determine
(b)
To derive:
Use an algebraic argument to derive tile property (by applying properties from Theorem).
To determine
(c)
To derive:
Comment on which method you found easier.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A classification study involving several classifiers was carried out. After training and the usual validation step, the following table
shows results for classifiers tried. In below, classifiers are identified as M1, M2 and so on.
Sensitivity
Specificity
M1
0.82
0.82
M2
0.92
0.72
M3
0.72
0.92
M4
0.46
0.47
M5
0.03
0.16
M6
0.13
0.02
M7
0.33
0.64
M8
0.72
0.24
M9
0.47
0.82
M10
0.06
0.84
The following list has statements about the classifiers. In the list, there is a single incorrect statement. Please identify the incorrect
statement.
Hint 1: recall that a classifier dominates another if both performance measures are better.
Hint 2: to help you visualize and compare classifiers, you may want to plot the classifier data in a ROC graph (which will not be
submitted).
Select one:
Qa.
O b.
Oc.
d.
By swapping zeroes and ones, M5 can be worsened
M8 does not dominate M9
M1 dominates all of M4, M5 and M6
M1 is a good classifier
?
e.
By swapping zeroes and ones, the performance of M4 does not change…
Consider the following training data, shown below before centering.
XY
1
0
1
1
1
1
1
1
00
1
1
1
0 0
1
1
1
0
1
1
This data set will be analysed after centering all columns (not scaling). In what follows, the centered data columns are referred to as
X and Y. Using these centered columns, we have the following quantities: XTX = 24/11 = 2.1818; XTY = 13/11 =
and YTY = 24/11 = 2.1818.
Ridge regression
Q1 For 2 =
R
AR
=
1.1818
0.56, compute and write in the provided space the ridge estimate ẞ (0.56). Use decimal numbers, not fractions.
Q2 Using the ridge estimate ẞ (0.56) you just computed, determine the percentage of shrinkage achieved with respect to the
squared L2 norm. That is, compute the shrinkage using || (0.56)||||||with the OLS estimate. In the provided space, write
the shrinkage as percentage between 0 and 100 with decimal values.
Lasso
AR
Q3 The following are several expressions for the lasso estimate: (2) = 0.5833 * (1 - 0.84622);
L
L
(a) = 0.5833 * (1 -0.78572); (A) = 0.5417 *…
5:38
Video Message
instructor
Submit Question
|||
D
Chapter 6 Solutions
Discrete Mathematics With Applications
Ch. 6.1 - The notation is read”______” and means that___Ch. 6.1 - To use an element argument for proving that a set...Ch. 6.1 - Prob. 3TYCh. 6.1 - An element x is in AB if , and only if,_______Ch. 6.1 - An element x in AB if, and only if,______Ch. 6.1 - An element x is in B-A if, and only if,______Ch. 6.1 - An elements x is in Acif, and only if.______Ch. 6.1 - The empty set is a set with ______Ch. 6.1 - The power set of a set A is _____Ch. 6.1 - Prob. 10TY
Ch. 6.1 - A collection of nonempty set is a partition of a...Ch. 6.1 - Prob. 1ESCh. 6.1 - Complete the proof from Example 6.1.3: Prove that...Ch. 6.1 - Let sets R, S, and T be defined as follows:...Ch. 6.1 - Let A={nZn=5rforsomeintegerr} and...Ch. 6.1 - Prob. 5ESCh. 6.1 - Let...Ch. 6.1 - ...Ch. 6.1 - Prob. 8ESCh. 6.1 - Complete the following sentences without using the...Ch. 6.1 - ...Ch. 6.1 - Let the universal set be R, the set of all real...Ch. 6.1 - Let the universal set be R, the set of all real...Ch. 6.1 - Let S be the set of all strings of 0’s and 1’s of...Ch. 6.1 - Prob. 14ESCh. 6.1 - Prob. 15ESCh. 6.1 - Prob. 16ESCh. 6.1 - Prob. 17ESCh. 6.1 - a. Is the number 0 in ? Why? b. Is ={} ? Why ? c....Ch. 6.1 - Prob. 19ESCh. 6.1 - Let Bi={xR0xi} for each integer i=1,2,3,4. a....Ch. 6.1 - Let Ci={i,i} for each nonnegative integer i.Ch. 6.1 - Let Di={xR-ixi}=[i,i] for each nonnegative integer...Ch. 6.1 - Let Vi={xR1ix1i}=[1i,1i] for each positive integer...Ch. 6.1 - Let Wi={xRxi}=(i,) for each nonnegative integer i....Ch. 6.1 - Let Ri={xR1x1+1i}=[1,1+1i]foreachpositiveintegeri....Ch. 6.1 - Let Si={xR1x1+1i}=(1,1+1i) for each positive...Ch. 6.1 - Prob. 27ESCh. 6.1 - Let E be the set of all even integers and O the...Ch. 6.1 - Let R be the set of all real number. Is a...Ch. 6.1 - Let Z be the set of all integers and let...Ch. 6.1 - Prob. 31ESCh. 6.1 - Suppose A={1} and B={u,v} . Find P(AB) . Suppose...Ch. 6.1 - Find P() FindP(p()). Find p(p(p())) .Ch. 6.1 - Prob. 34ESCh. 6.1 - Prob. 35ESCh. 6.1 - Prob. 36ESCh. 6.1 - Prob. 37ESCh. 6.1 - Write an algorithm to determine whether a given...Ch. 6.2 - Prob. 1TYCh. 6.2 - Prob. 2TYCh. 6.2 - Prob. 3TYCh. 6.2 - Prob. 4TYCh. 6.2 - Prob. 5TYCh. 6.2 - Prob. 6TYCh. 6.2 - To say that an element is in A(BC) means that it...Ch. 6.2 - The following are two proofs that for all sets A...Ch. 6.2 - In 3 and 4, supply explanations of the steps in...Ch. 6.2 - Prob. 4ESCh. 6.2 - Prob. 5ESCh. 6.2 - Let and stand for the words “intersection” and...Ch. 6.2 - Prob. 7ESCh. 6.2 - Prob. 8ESCh. 6.2 - Prob. 9ESCh. 6.2 - Prob. 10ESCh. 6.2 - Prob. 11ESCh. 6.2 - Prob. 12ESCh. 6.2 - Prob. 13ESCh. 6.2 - Prob. 14ESCh. 6.2 - Prob. 15ESCh. 6.2 - Prob. 16ESCh. 6.2 - Prob. 17ESCh. 6.2 - Prob. 18ESCh. 6.2 - Prob. 19ESCh. 6.2 - Prob. 20ESCh. 6.2 - Prob. 21ESCh. 6.2 - Prob. 22ESCh. 6.2 - Prob. 23ESCh. 6.2 - Prob. 24ESCh. 6.2 - Prob. 25ESCh. 6.2 - Prob. 26ESCh. 6.2 - Fill in the blanks in the following proof that for...Ch. 6.2 - Prob. 28ESCh. 6.2 - Prob. 29ESCh. 6.2 - Prob. 30ESCh. 6.2 - Prob. 31ESCh. 6.2 - Prob. 32ESCh. 6.2 - Prob. 33ESCh. 6.2 - Prob. 34ESCh. 6.2 - Prob. 35ESCh. 6.2 - Prob. 36ESCh. 6.2 - Prob. 37ESCh. 6.2 - Prob. 38ESCh. 6.2 - Prove each statement is 39-44. For all sets A and...Ch. 6.2 - Prove each statement in 39-44. For every positive...Ch. 6.2 - Prob. 41ESCh. 6.2 - Prove each statement in 39-44. For every positive...Ch. 6.2 - Prob. 43ESCh. 6.2 - Prob. 44ESCh. 6.3 - Given a proposed set identity set identity...Ch. 6.3 - When using algebraic method for proving a set...Ch. 6.3 - Prob. 3TYCh. 6.3 - Prob. 1ESCh. 6.3 - Prob. 2ESCh. 6.3 - Prob. 3ESCh. 6.3 - Prob. 4ESCh. 6.3 - Prob. 5ESCh. 6.3 - Prob. 6ESCh. 6.3 - Prob. 7ESCh. 6.3 - Prob. 8ESCh. 6.3 - Prob. 9ESCh. 6.3 - Prob. 10ESCh. 6.3 - Prob. 11ESCh. 6.3 - Prob. 12ESCh. 6.3 - Prob. 13ESCh. 6.3 - Prob. 14ESCh. 6.3 - Prob. 15ESCh. 6.3 - Prob. 16ESCh. 6.3 - Prob. 17ESCh. 6.3 - Prob. 18ESCh. 6.3 - Prob. 19ESCh. 6.3 - Prob. 20ESCh. 6.3 - Prob. 21ESCh. 6.3 - Write a negation for each of the following...Ch. 6.3 - Let S={a,b,c} and for each integer i = 0, 1, 2, 3,...Ch. 6.3 - Let A={t,u,v,w} , and let S1 be the set of all...Ch. 6.3 - Prob. 25ESCh. 6.3 - Prob. 26ESCh. 6.3 - Prob. 27ESCh. 6.3 - Prob. 28ESCh. 6.3 - Some steps are missing from the following proof...Ch. 6.3 - In 30-40, construct an algebraic proof for the...Ch. 6.3 - Prob. 31ESCh. 6.3 - In 30-40, construct an algebraic proof for the...Ch. 6.3 - Prob. 33ESCh. 6.3 - In 30-40, construct an algebraic proof for the...Ch. 6.3 - In 30—40, construct an algebraic proof for the...Ch. 6.3 - In 30-40, construct an algebraic proof for the...Ch. 6.3 - In 30-40, construct an algebraic proof for the...Ch. 6.3 - In 30-40, construct an algebraic proof for the...Ch. 6.3 - In 30-40, construct an algebraic proof for the...Ch. 6.3 - In 30-40, construct an algebraic proof for the...Ch. 6.3 - Prob. 41ESCh. 6.3 - Prob. 42ESCh. 6.3 - Prob. 43ESCh. 6.3 - Prob. 44ESCh. 6.3 - Consider the following set property: For all sets...Ch. 6.3 - Prob. 46ESCh. 6.3 - Prob. 47ESCh. 6.3 - Prob. 48ESCh. 6.3 - Prob. 49ESCh. 6.3 - Prob. 50ESCh. 6.3 - Prob. 51ESCh. 6.3 - Prob. 52ESCh. 6.3 - Prob. 53ESCh. 6.3 - Prob. 54ESCh. 6.4 - In the comparison between the structure of the set...Ch. 6.4 - Prob. 2TYCh. 6.4 - Prob. 3TYCh. 6.4 - Prob. 1ESCh. 6.4 - Prob. 2ESCh. 6.4 - In 1-3 assume that B is a Boolean algebra with...Ch. 6.4 - Prob. 4ESCh. 6.4 - Prob. 5ESCh. 6.4 - Prob. 6ESCh. 6.4 - Prob. 7ESCh. 6.4 - Prob. 8ESCh. 6.4 - Prob. 9ESCh. 6.4 - In 4—10 assume that B is a Boolean algebra with...Ch. 6.4 - Prob. 11ESCh. 6.4 - Exercises 12-15 provide an outline for a proof...Ch. 6.4 - Prob. 13ESCh. 6.4 - Exercises 12-15 provide an outline for a proof...Ch. 6.4 - Prob. 15ESCh. 6.4 - Prob. 16ESCh. 6.4 - Prob. 17ESCh. 6.4 - In 16-21 determine where each sentence is a...Ch. 6.4 - In 16-21 determin whether each sentence is a...Ch. 6.4 - In 16-21 determine wherether each sentence is a...Ch. 6.4 - In 16-21 determine wherether each sentence is a...Ch. 6.4 - Prob. 22ESCh. 6.4 - Prob. 23ESCh. 6.4 - Can there exist a cimputer program that has as...Ch. 6.4 - Can there exist a book that refers to all those...Ch. 6.4 - Some English adjectives are descriptive of...Ch. 6.4 - As strange as it may seem, it is possible to give...Ch. 6.4 - Is there an alogroithm whichm for a fixed quantity...Ch. 6.4 - Prob. 29ES
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Calculate the 95% confidence intervals for the proportion of children surviving, and the proportion of non-crew adult passengers surviving. We want to use the given data to make inferences about the general population of all large boat crashes, so the data set should be treated as a random sample for this purpose. Part 2 The 95% confidence interval for survival rate amongst non-crew adults runs from enter your response here% to enter your response here%. (Round to one decimal place as needed. Use ascending order.) Part 3 The 95% confidence interval for survival rate amongst children runs from enter your response here% to enter your response here%. (Round to one decimal place as needed. Use ascending order.) Part 4 Test the alternative hypothesis that the proportion of children surviving does not equal 35%, and next, test the alternative hypothesis that the proportion of non-crew adult passengers surviving does not equal 35%. Again, the data set should…arrow_forward1. Given X' = X 3 e2t (a) Verify that X₁(t) = (e) and X2(t) = (et) - are solutions to the given system. (b) Verify that X₁(t) and X2(t) form a fundamental set on the interval (-∞, ∞). (c) Write the general solution to the given system. (d) Find the solution that satisfies the initial condition X(0) = ( 2 ).arrow_forwardProve that a relation X defined on a set A that is reflexive, symmetric and antisymmetric is an equivalence relation and determine the equivalence classes.arrow_forward
- 8:38 *** TEMU TEMU -3 -2 7 B 2 1 & 5G. 61% 1 2 -1 Based on the graph above, determine the amplitude, period, midline, and equation of the function. Use f(x) as the output. Amplitude: 2 Period: 2 Midline: 2 ☑ syntax error: this is not an equation. Function: f(x) = −2 cos(πx + 2.5π) +2× Question Help: Worked Example 1 ☑ Message instructor Submit Question ||| <arrow_forwardLet X be the relation defined on the power set of the set integers P(Z) by AXB whenever A U B is a finite set of integers. Prove whether or not X is reflexive, symmetric, antisymmetirc or transitivearrow_forward8:39 *** TEMU 5G 60% A ferris wheel is 28 meters in diameter and boarded from a platform that is 2 meters above the ground. The six o'clock position on the ferris wheel is level with the loading platform. The wheel completes 1 full revolution in 4 minutes. The function h = f(t) gives your height in meters above the ground t minutes after the wheel begins to turn. What is the amplitude? 14 meters What is the equation of the Midline? y = 16 What is the period? 4 meters minutes The equation that models the height of the ferris wheel after t minutes is: f(t): = ƒ (3) = ·−14(0) + 16 syntax error: you gave an equation, not an expression. syntax error. Check your variables - you might be using an incorrect one. How high are you off of the ground after 3 minutes? Round your answe the nearest meter. ||| <arrow_forward
- can you solve this question step by step pleasearrow_forwardS cosx dx sin -3/ (x) Xarrow_forwardUsing the toddler data table in Question 1, describe the toddlers in the sample with joint probabilities only. (300) B(K)-00+300 501 30 smot dbabib (oor de leng 001-009:(00s) 200, yoogie Fox (D) ed to diman edarrow_forward
- Right-Handed Left-Handed 24 Gender Males 4 Females 2 12arrow_forwardappropriate probabilities. 19 Using the data from Table 17-1, are gender and political party independent for this group? nis cow sib signia si Falows grillor le pussarrow_forward11 Using the same toddler data, describe the toddlers with marginal probabilities only. BAY bit of benoliesmas (89 abje' jook stages of te cojota ing ou an out of to cojota ovig ber el ba 3+4=029arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,

Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning

Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,

Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Propositional Logic, Propositional Variables & Compound Propositions; Author: Neso Academy;https://www.youtube.com/watch?v=Ib5njCwNMdk;License: Standard YouTube License, CC-BY
Propositional Logic - Discrete math; Author: Charles Edeki - Math Computer Science Programming;https://www.youtube.com/watch?v=rL_8y2v1Guw;License: Standard YouTube License, CC-BY
DM-12-Propositional Logic-Basics; Author: GATEBOOK VIDEO LECTURES;https://www.youtube.com/watch?v=pzUBrJLIESU;License: Standard Youtube License
Lecture 1 - Propositional Logic; Author: nptelhrd;https://www.youtube.com/watch?v=xlUFkMKSB3Y;License: Standard YouTube License, CC-BY
MFCS unit-1 || Part:1 || JNTU || Well formed formula || propositional calculus || truth tables; Author: Learn with Smily;https://www.youtube.com/watch?v=XV15Q4mCcHc;License: Standard YouTube License, CC-BY