
Pearson eText University Calculus: Early Transcendentals -- Instant Access (Pearson+)
4th Edition
ISBN: 9780136880912
Author: Joel Hass, Christopher Heil
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6.2, Problem 7E
Use the shell method to find the volumes of the solids generated by revolving the regions bounded by the curves and lines in Exercises 7−12 about the y-axis.
7. y = x, y = -x/2, x = 2
Expert Solution & Answer

Learn your wayIncludes step-by-step video

schedule02:29
Students have asked these similar questions
7.1 (A/B). A Uniform I-section beam has flanges 150 mm wide by 8 mm thick and a
web 180 mm wide and 8 mm thick. At a certain section there is a shearing force of
120 KN. Draw a diagram to illustrate the distribution of shear stress across the
section as a result of bending. What is the maximum shear stress? [86.7 MN/m².
1. Let Ả = −2x + 3y+42, B =
-
-
7x +lý +22, and C = −1x + 2y +
42. Find (a) Ả X B (b) ẢX B°C c)
→→
Ả B X C d) ẢB°C e) ẢX B XC.
3.13 (B). A beam ABC, 6 m
long, is simply-supported at the left-hand end A and at B
I'm from the right-hand end C. The beam is of weight 100 N/metre run. (a)
Determine the reactions at A and B. (b) Construct to scales of 20 mm = 1 m and
20 mm = 100 N, the shearing-force diagram for the beam, indicating thereon the
principal values. (c) Determine the magnitude and position of the maximum bending
moment. (You may, if you so wish, deduce the answers from the shearing force
diagram without constructing a full or partial bending-moment diagram.) [C.G.]
C240 N, 360 N, 288 Nm, 2.4 m from A.]
Chapter 6 Solutions
Pearson eText University Calculus: Early Transcendentals -- Instant Access (Pearson+)
Ch. 6.1 - Find the volumes of the solids in Exercises 110....Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...Ch. 6.1 - Find the volumes of the solids in Exercises...
Ch. 6.1 - Find the volume of the given right tetrahedron....Ch. 6.1 - Prob. 12ECh. 6.1 - A twisted solid A square of side length s lies in...Ch. 6.1 - Cavalieri’s principle A solid lies between planes...Ch. 6.1 - Intersection of two half-cylinders Two...Ch. 6.1 - Gasoline in a tank A gasoline tank is in the shape...Ch. 6.1 - Prob. 17ECh. 6.1 - Prob. 18ECh. 6.1 - In Exercises 17-20, find the volume of the solid...Ch. 6.1 - Prob. 20ECh. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Prob. 22ECh. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Prob. 24ECh. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Prob. 29ECh. 6.1 - Prob. 30ECh. 6.1 - Prob. 31ECh. 6.1 - Prob. 32ECh. 6.1 - Prob. 33ECh. 6.1 - Prob. 34ECh. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Prob. 36ECh. 6.1 - Prob. 37ECh. 6.1 - Prob. 38ECh. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Prob. 40ECh. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Find the volumes of the solids generated by...Ch. 6.1 - Prob. 45ECh. 6.1 - Prob. 46ECh. 6.1 - In Exercises 47-50, find the volume of the solid...Ch. 6.1 - Prob. 48ECh. 6.1 - In Exercises 47-50, find the volume of the solid...Ch. 6.1 - In Exercises 47-50, find the volume of the solid...Ch. 6.1 - In Exercises 51 and 52, find the volume of the...Ch. 6.1 - In Exercises 51 and 52, find the volume of the...Ch. 6.1 - Find the volume of the solid generated by...Ch. 6.1 - Find the volume of the solid generated by...Ch. 6.1 - Find the volume of the solid generated by...Ch. 6.1 - Prob. 56ECh. 6.1 - Prob. 57ECh. 6.1 - Prob. 58ECh. 6.1 - Volume of a bowl
A hemispherical bowl of radius a...Ch. 6.1 - Prob. 60ECh. 6.1 - Prob. 61ECh. 6.1 - Prob. 62ECh. 6.1 - Prob. 63ECh. 6.1 - Prob. 64ECh. 6.1 - Prob. 65ECh. 6.1 - Prob. 66ECh. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - In Exercises 16, use the shell method to find the...Ch. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - In Exercises 1–6, use the shell method to find the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Prob. 12ECh. 6.2 - Prob. 13ECh. 6.2 - Prob. 14ECh. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Use the shell method to find the volumes of the...Ch. 6.2 - Prob. 19ECh. 6.2 - Prob. 20ECh. 6.2 - Prob. 21ECh. 6.2 - Prob. 22ECh. 6.2 - In Exercises 23–26, use the shell method to find...Ch. 6.2 - In Exercises 23–26, use the shell method to find...Ch. 6.2 - In Exercises 23–26, use the shell method to find...Ch. 6.2 - In Exercises 23–26, use the shell method to find...Ch. 6.2 - In Exercises 27 and 28, use the shell method to...Ch. 6.2 - In Exercises 27 and 28, use the shell method to...Ch. 6.2 - For some regions, both the washer and shell...Ch. 6.2 - Prob. 30ECh. 6.2 - Prob. 31ECh. 6.2 - Prob. 32ECh. 6.2 - Prob. 33ECh. 6.2 - Prob. 34ECh. 6.2 - Prob. 35ECh. 6.2 - Prob. 36ECh. 6.2 - Prob. 37ECh. 6.2 - Prob. 38ECh. 6.2 - Prob. 39ECh. 6.2 - Prob. 40ECh. 6.2 - Prob. 41ECh. 6.2 - A Bundt cake, well known for having a ringed...Ch. 6.2 - Prob. 43ECh. 6.2 - Prob. 44ECh. 6.2 - Prob. 45ECh. 6.2 - Prob. 46ECh. 6.2 - Prob. 47ECh. 6.2 - Find the volume of the solid generated by...Ch. 6.2 - Prob. 49ECh. 6.2 - Prob. 50ECh. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 116....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Prob. 10ECh. 6.3 - Prob. 11ECh. 6.3 - Prob. 12ECh. 6.3 - Find the lengths of the curves in Exercises 1–16....Ch. 6.3 - Prob. 14ECh. 6.3 - Prob. 15ECh. 6.3 - Prob. 16ECh. 6.3 - Prob. 17ECh. 6.3 - Prob. 18ECh. 6.3 - Prob. 19ECh. 6.3 - Prob. 20ECh. 6.3 - Prob. 21ECh. 6.3 - Prob. 22ECh. 6.3 - Prob. 23ECh. 6.3 - Prob. 24ECh. 6.3 - Prob. 25ECh. 6.3 - Prob. 26ECh. 6.3 - Prob. 27ECh. 6.3 - Prob. 28ECh. 6.3 - Length of a line segment Use the arc length...Ch. 6.3 - Prob. 30ECh. 6.3 - Prob. 31ECh. 6.3 - Prob. 32ECh. 6.3 - Prob. 33ECh. 6.3 - Prob. 34ECh. 6.3 - Prob. 35ECh. 6.3 - Prob. 36ECh. 6.3 - Prob. 37ECh. 6.3 - Prob. 38ECh. 6.4 - In Exercises 1-8: Set up an integral for the area...Ch. 6.4 - In Exercises 1-8:
Set up an integral for the area...Ch. 6.4 - In Exercises 1-8:
Set up an integral for the area...Ch. 6.4 - In Exercises 1-8:
Set up an integral for the area...Ch. 6.4 - Prob. 5ECh. 6.4 - Prob. 6ECh. 6.4 - Prob. 7ECh. 6.4 - Prob. 8ECh. 6.4 - Prob. 9ECh. 6.4 - Prob. 10ECh. 6.4 - Prob. 11ECh. 6.4 - Prob. 12ECh. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Prob. 18ECh. 6.4 - Find the areas of the surfaces generated by...Ch. 6.4 - Prob. 20ECh. 6.4 - Prob. 21ECh. 6.4 - Prob. 22ECh. 6.4 - Prob. 23ECh. 6.4 - Prob. 24ECh. 6.4 - Prob. 25ECh. 6.4 - Prob. 26ECh. 6.4 - Prob. 27ECh. 6.4 - Prob. 28ECh. 6.4 - Prob. 29ECh. 6.4 - The surface of an astroid Find the area of the...Ch. 6.5 - The graphs of force functions (in newtons) are...Ch. 6.5 - Prob. 2ECh. 6.5 - Spring constant It took 1800 J of work to stretch...Ch. 6.5 - Stretching a spring A spring has a natural length...Ch. 6.5 - Stretching a rubber band A force of 2 N will...Ch. 6.5 - Stretching a spring If a force of 90 N stretches a...Ch. 6.5 - Subway car springs It takes a force of 21,714 lb...Ch. 6.5 - Bathroom scale A bathroom scale is compressed 1/16...Ch. 6.5 - Lifting a rope A mountain climber is about to haul...Ch. 6.5 - Leaky sandbag A bag of sand originally weighing...Ch. 6.5 - Lifting an elevator cable An electric elevator...Ch. 6.5 - Force of attraction When a particle of mass m is...Ch. 6.5 - Leaky bucket Assume the bucket in Example 4 is...Ch. 6.5 - (Continuation of Exercise 13.) The workers in...Ch. 6.5 - Pumping water The rectangular tank shown here,...Ch. 6.5 - Emptying a cistern The rectangular cistern...Ch. 6.5 - Pumping oil How much work would it take to pump...Ch. 6.5 - Pumping a half-full tank Suppose that, instead of...Ch. 6.5 - Prob. 19ECh. 6.5 - Prob. 20ECh. 6.5 - Prob. 21ECh. 6.5 - Prob. 22ECh. 6.5 - Prob. 23ECh. 6.5 - Prob. 24ECh. 6.5 - Kinetic energy If a variable force of magnitude...Ch. 6.5 - Prob. 26ECh. 6.5 - Prob. 27ECh. 6.5 - In Exercises 26–30, use the result of Exercise...Ch. 6.5 - Prob. 29ECh. 6.5 - Prob. 30ECh. 6.5 - Prob. 31ECh. 6.5 - Prob. 32ECh. 6.5 - Prob. 33ECh. 6.5 - Prob. 34ECh. 6.6 - In Exercises 1–6, find the mass M and center of...Ch. 6.6 - Prob. 2ECh. 6.6 - In Exercises 1–6, find the mass M and center of...Ch. 6.6 - Prob. 4ECh. 6.6 - Prob. 5ECh. 6.6 - Prob. 6ECh. 6.6 - In Exercises 7–20, find the center of mass of a...Ch. 6.6 - Prob. 8ECh. 6.6 - In Exercises 7–20, find the center of mass of a...Ch. 6.6 - Prob. 10ECh. 6.6 - Prob. 11ECh. 6.6 - Prob. 12ECh. 6.6 - In Exercises 7–20, find the center of mass of a...Ch. 6.6 - In Exercises 7–20, find the center of mass of a...Ch. 6.6 - Prob. 15ECh. 6.6 - Prob. 16ECh. 6.6 - Prob. 17ECh. 6.6 - Prob. 18ECh. 6.6 - Prob. 19ECh. 6.6 - Prob. 20ECh. 6.6 - Prob. 21ECh. 6.6 - Prob. 22ECh. 6.6 - Prob. 23ECh. 6.6 - Find the center of mass of a thin plate covering...Ch. 6.6 - Prob. 25ECh. 6.6 - Prob. 26ECh. 6.6 - Prob. 27ECh. 6.6 - Prob. 28ECh. 6.6 - Use the result in Exercise 27 to find the...Ch. 6.6 - Prob. 30ECh. 6.6 - Prob. 31ECh. 6.6 - Prob. 32ECh. 6.6 - Prob. 33ECh. 6.6 - Prob. 34ECh. 6.6 - Prob. 35ECh. 6.6 - Prob. 36ECh. 6.6 - Prob. 37ECh. 6.6 - Prob. 38ECh. 6.6 - Prob. 39ECh. 6.6 - Prob. 40ECh. 6 - Prob. 1GYRCh. 6 - How are the disk and washer methods for...Ch. 6 - Prob. 3GYRCh. 6 - Prob. 4GYRCh. 6 - Prob. 5GYRCh. 6 - Prob. 6GYRCh. 6 - Prob. 7GYRCh. 6 - Prob. 8GYRCh. 6 - Prob. 9GYRCh. 6 - Prob. 1PECh. 6 - Prob. 2PECh. 6 - Prob. 3PECh. 6 - Prob. 4PECh. 6 - Prob. 5PECh. 6 - Prob. 6PECh. 6 - Prob. 7PECh. 6 - Prob. 8PECh. 6 - Prob. 9PECh. 6 - Prob. 10PECh. 6 - Prob. 11PECh. 6 - Prob. 12PECh. 6 - Prob. 13PECh. 6 - Prob. 14PECh. 6 - Prob. 15PECh. 6 - Prob. 16PECh. 6 - Prob. 17PECh. 6 - Find the volumes of the solids in Exercises...Ch. 6 - Prob. 19PECh. 6 - Prob. 20PECh. 6 - Prob. 21PECh. 6 - Prob. 22PECh. 6 - Prob. 23PECh. 6 - Prob. 24PECh. 6 - Prob. 25PECh. 6 - Prob. 26PECh. 6 - Prob. 27PECh. 6 - Prob. 28PECh. 6 - Prob. 29PECh. 6 - Leaky tank truck You drove an 800-gal tank truck...Ch. 6 - Prob. 31PECh. 6 - Prob. 32PECh. 6 - Prob. 33PECh. 6 - Prob. 34PECh. 6 - Prob. 35PECh. 6 - Prob. 36PECh. 6 - Prob. 37PECh. 6 - Prob. 38PECh. 6 - Prob. 39PECh. 6 - Prob. 40PECh. 6 - Prob. 41PECh. 6 - Prob. 42PECh. 6 - Prob. 43PECh. 6 - Prob. 44PECh. 6 - Prob. 1AAECh. 6 - Prob. 2AAECh. 6 - Prob. 3AAECh. 6 - Prob. 4AAECh. 6 - Prob. 5AAECh. 6 - Prob. 6AAECh. 6 - Prob. 7AAECh. 6 - Prob. 8AAECh. 6 - Prob. 9AAECh. 6 - Prob. 10AAECh. 6 - Prob. 11AAECh. 6 - Prob. 12AAECh. 6 - Prob. 13AAECh. 6 - Prob. 14AAECh. 6 - Prob. 15AAECh. 6 - Prob. 16AAE
Additional Math Textbook Solutions
Find more solutions based on key concepts
Heights Refer to the dotplot in the previous question. a. What is the height of a woman with a z-score of -1? b...
Introductory Statistics
Answer the following regarding the English alphabet. a. Determine the ratio of vowels to consonants. b. What is...
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
If f(x) = 1/(x3 + 1), what is f(2)? What is f(y2)?
Calculus: Early Transcendentals (2nd Edition)
Sampling Method. In Exercises 9-12, determine whether the sampling method appears to be sound or is flawed.
9. ...
Elementary Statistics
CHECK POINT I You deposit $3000 in s savings account at Yourtown Bank, which has rate of 5%. Find the interest ...
Thinking Mathematically (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- 5. Using parentheses make sense of the expression V · VXVV · Å where Ả = Ã(x, y, z). Is the result a vector or a scaler?arrow_forward3.10 (A/B). A beam ABCDE is simply supported at A and D. It carries the following loading: a distributed load of 30 kN/m between A and B, a concentrated load of 20 KN at B, a concentrated load of 20 KN at C, a concentrated load of 10 KN at E; a distributed load of 60 kN/m between 0 and E. Span AB = 1.5 BC = CD = DE 1 m. Calculate the value of the reactions at A and D and hence draw the S.F. and B.M. diagrams. What are the magnitude and position of the maximum B.M. on the beam? [41.1, 113.9 KN, 28.15 kNm; 1.37 m from A.J m,arrow_forward3.14 (B). A beam ABCD, 6 m long, is simply-supported at the right-hand end and at a point B Im from the left-hand end A. It carries a vertical load of 10 KN at A, a second concentrated load of 20 KN at C, 3 m from D, and a uniformly distributed load of 10 kN/m between C and D. Determine: (a) the values of the reactions at B and 0, (6) the position and magnitude of the maximum bending moment. [33 KN, 27 KN, 2.7 m from D, 36.45k Nm.]arrow_forward
- 3.17 (B). A simply supported beam has a span of 6 m and carries a distributed load which varies in a linea manner from 30 kN/m at one support to 90 kN/m at the other support. Locate the point of maximum bendin moment and calculate the value of this maximum. Sketch the S.F. and B.M. diagrams. [U.L.] [3.25 m from l.h. end; 272 KN m 30. 90arrow_forward3.11 (B). A beam, 12 m long, is to be simply supported at 2m from each end and to carry a U.d.l of 30kN/m together with a 30 KN point load at the right-hand end. For ease of transportation the beam is to be jointed in two places, one joint being Situated 5 m from the left-hand end. What load (to the nearest KN) must be applied to the left-hand end to ensure that there is no B.M. at the joint (i.e. the joint is to be a point of contraflexure)? What will then be the best position on the beam for the other joint? Determine the position and magnitude of the maximum B.M. present on the beam. [114 KN, 1.6 m from r.h. reaction; 4.7 m from 1.h. reaction; 43.35 KN m.]arrow_forward2. Using vector algebraic operations, if - Ả = 2ây – mây – C - B = mây tây – 2, C = ây + mây + 20, D = m x + mây tậ Z Find the value(s) of m such that (a) Ả is perpendicular to B (b) B is parallel to Carrow_forward
- 1. Determine whether the following sets are subspaces of $\mathbb{R}^3$ under the operations of addition and scalar multiplication defined on $\mathbb{R}^3$. Justify your answers.(a) $W_1=\left\{\left(a_1, a_2, a_3\right) \in \mathbb{R}^3: a_1=3 a_2\right.$ and $\left.a_3=\mid a_2\right\}$(b) $W_2=\left\{\left(a_1, a_2, a_3\right) \in \mathbb{R}^3: a_1=a_3+2\right\}$(c) $W_3=\left\{\left(a_1, a_2, a_3\right) \in \mathbb{R}^3: 2 a_1-7 a_2+a_3=0\right\}$(d) $W_4=\left\{\left(a_1, a_2, a_3\right) \in \mathbb{R}^3: a_1-4 a_2-a_3=0\right\}$(e) $W_s=\left\{\left(a_1, a_2, a_3\right) \in \mathbb{R}^3: a_1+2 a_2-3 a_3=1\right\}$(f) $W_6=\left\{\left(a_1, a_2, a_3\right) \in \mathbb{R}^3: 5 a_1^2-3 a_2^2+6 a_3^2=0\right\}$arrow_forward3 Evaluate the double integral 10 y√x dy dx. First sketch the area of the integral involved, then carry out the integral in both ways, first over x and next over y, and vice versa.arrow_forwardQuestion 2. i. Suppose that the random variable X takes two possible values 1 and -1, and P(X = 1) = P(X-1)=1/2. Let Y=-X. Are X and Y the same random variable? Do X and Y have the same distribution? Explain your answer. ii. Suppose that the random variable X~N(0, 1), let Y=-X. Are X and Y the same random variable? Do X and Y have the same distribution? Explain your answer.arrow_forward
Recommended textbooks for you
- Elementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell

Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,

Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL

Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY