21/solve the following differential equation Using laplace transform y₁ =-y, Y₁(0)=1 y' = Y Y₂(0)=0 2 21 Solve the following equations: dy 1- dt + 2y + = ydt 2 cost, y(0) = 1 2 2- y(t) = ±² + (yet) sin (t-u) du Q3: Answer the following: 1- L [Log Sa] (5²+9²) 2- L1 [Log (Cos²y1] 0-25 3-L-1 [ -] 4- (5+1) 3 L (ezt sin3t) e-s 5- L-1 ( 너 (0) 5² +5

Linear Algebra: A Modern Introduction
4th Edition
ISBN:9781285463247
Author:David Poole
Publisher:David Poole
Chapter6: Vector Spaces
Section6.7: Applications
Problem 18EQ
icon
Related questions
Question
21/solve the following differential equation
Using laplace transform y₁ =-y,
Y₁(0)=1
y' = Y
Y₂(0)=0
2
21 Solve the following equations:
dy
1-
dt
+ 2y +
=
ydt 2 cost, y(0) = 1
2
2- y(t) = ±² + (yet) sin (t-u) du
Q3: Answer the following:
1- L [Log Sa]
(5²+9²)
2- L1 [Log (Cos²y1]
0-25
3-L-1 [ -]
4-
(5+1) 3
L (ezt sin3t)
e-s
5- L-1
(
너 (0)
5² +5
Transcribed Image Text:21/solve the following differential equation Using laplace transform y₁ =-y, Y₁(0)=1 y' = Y Y₂(0)=0 2 21 Solve the following equations: dy 1- dt + 2y + = ydt 2 cost, y(0) = 1 2 2- y(t) = ±² + (yet) sin (t-u) du Q3: Answer the following: 1- L [Log Sa] (5²+9²) 2- L1 [Log (Cos²y1] 0-25 3-L-1 [ -] 4- (5+1) 3 L (ezt sin3t) e-s 5- L-1 ( 너 (0) 5² +5
Expert Solution
steps

Step by step

Solved in 2 steps with 10 images

Blurred answer
Recommended textbooks for you
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning