
Concept explainers
a.
To find: the linear velocity in feet per second.
a.

Answer to Problem 37E
Explanation of Solution
Given information:
Angular velocity
Distance of the rider from the centre
Calculation:
The linear velocity can be evaluated as follows:
Thus the linear velocity is
b.
To find: the distance between the person from the center of the carousel.
b.

Answer to Problem 37E
9.9 feet
Explanation of Solution
Given information:
Angular velocity
Distance of the rider from the centre
Liner velocity of person inside the carousel
Calculation:
The angular velocity of both the persons i.e. sitting inside and outside of the carousel will be same. So first evaluate the angular velocity in radian per second as shown below.
Thus the angular velocity is
The distance from the center of the carousel to the person
Thus the distance is 9.9 feet.
c.
To find: the rate by which the rider on the outside going is faster than the rider on the inside.
c.

Answer to Problem 37E
Explanation of Solution
Given information:
Liner velocity of person inside the carousel
Linear velocity of carousel =
Calculation:
The linear velocity of carousel and that of person outside the carousel
Thus rate difference is
Chapter 6 Solutions
Advanced Mathematical Concepts: Precalculus with Applications, Student Edition
Additional Math Textbook Solutions
Pre-Algebra Student Edition
A First Course in Probability (10th Edition)
Calculus: Early Transcendentals (2nd Edition)
Introductory Statistics
Thinking Mathematically (6th Edition)
- A tank holds a 135 gal solution of water and salt. Initially, the solution contains 21 lb of salt. A salt solution with a concentration of 3 lb of salt per gal begins flowing into the tank at the rate of 3 gal per minute. The solution in the tank also begins flowing out at a rate of 3 gal per minute. Let y be the amount of salt present in the tank at time t. (a) Find an expression for the amount of salt in the tank at any time. (b) How much salt is present after 51 minutes? (c) As time increases, what happens to the salt concentration?arrow_forwardSolve please and thanks!arrow_forwardSolve please and thanks!arrow_forward
- The graph of the function f in the figure below consists of line segments and a semicircle. Let g be the function given by x 9(x) = * f(t)dt. Determine all values of r, if any, where g has a relative minimum on the open interval (-9, 9). y 8 7 6 5 4 32 1 Graph of f x -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 -1 -2 -3 -4 -5 -6 678 -7 -8arrow_forwardSolve pleasearrow_forwardA particle moves along the x-axis for 0 < t < 18 such that its velocity is given by the graph shown below. Find the total distance traveled by the particle during the time interval 4 ≤ t ≤ 8. 8 y 7 6 5 4 32 1 6 7 -1 1 2 3 4 5 -1 -2 -3 -4 56 -6 -8 8 00 Graph of v(t) x 9 10 11 12 13 14 15 16 17 18 19arrow_forward
- Using the Chain rule please and thank youarrow_forward10. [-/3 Points] DETAILS MY NOTES SESSCALCET2 7.2.047. Consider the following. aR- br (a) Set up an integral for the volume a solid torus (the donut-shaped solid shown in the figure) with radii br and aR. (Let a 8 and b = 2.) = dy (b) By interpreting the integral as an area, find the volume V of the torus. V = Need Help? Read It Watch Itarrow_forwardGraph y= log(x − 1) +4 10+ 9 8 7 6 5 4 32 1 10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 -1 6 7 8 9 10 -2 -3 -4 -5 -6 -7 -8 -9 -10arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





