Mathematical Methods in the Physical Sciences
Mathematical Methods in the Physical Sciences
3rd Edition
ISBN: 9780471198260
Author: Mary L. Boas
Publisher: Wiley, John & Sons, Incorporated
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 6.12, Problem 13MP

Given ϕ = x 2 y z and the point P ( 3 , 4 , 1 ) , find

(a) ϕ at P ;

(b) a unit vector normal to the surface ϕ = 5 at P ;

(c) a vector in the direction of most rapid increase of ϕ at P ;

(d) the magnitude of the vector in (c);

(e) the derivative of ϕ at P in a direction parallel to the line r = i j + 2 k + ( 6 i

  • j 4 k ) t .
  • Blurred answer
    Students have asked these similar questions
    Given the function y = 5 - x². (a) Find the equation of the line normal to the curve at the point P: (1,4). (b) Write your answer in vector format using the 2D unit vectors î, J.
    Subtracting the two equations, find a vector equation for the curve of intersection between y= 4x2+(3/4)z2 and y-1= 3x2+(1/2)z2 for x>0. Find and simplify the tangential component of acceleration for your curve.
    The position vector r describes the path of an object moving in the xy-plane. Position Vector Point r(t) = 2 cos ti + 2 sin tj (VZ, V2) (a) Find the velocity vector, speed, and acceleration vector of the object. v(t) = s(t) a(t) = (b) Evaluate the velocity vector and acceleration vector of the object at the given point. a(#) =

    Chapter 6 Solutions

    Mathematical Methods in the Physical Sciences

    Ch. 6.3 - Write out the twelve triple scalar products...Ch. 6.3 - (a) Simplify ( AB)2[(AB)B]A by using ( 3.9). (b)...Ch. 6.3 - Prove that the triple scalar product of (AB),(BC),...Ch. 6.3 - Prove the Jacobi identity: A(BC)+B(CA)+C(AB)=0....Ch. 6.3 - Prob. 15PCh. 6.3 - In the discussion of Figure 3.8, we found for the...Ch. 6.3 - Expand the triple product for a=(r) given in the...Ch. 6.3 - Two moving charged particles exert forces on each...Ch. 6.3 - The force F=i+3j+2k acts at the point (1,1,1). (a)...Ch. 6.3 - Prob. 20PCh. 6.4 - Verify equations (4.5) by writing out the...Ch. 6.4 - Let the position vector (with its tail at the...Ch. 6.4 - As in Problem 2, if the position vector of a...Ch. 6.4 - Prob. 4PCh. 6.4 - The position of a particle at time t is given by...Ch. 6.4 - The force acting on a moving charged particle in a...Ch. 6.4 - Sketch a figure and verify equation ( 4.12).Ch. 6.4 - In polar coordinates, the position vector of a...Ch. 6.4 - The angular momentum of a particle m is defined by...Ch. 6.4 - If V(t) is a vector function oft, find the...Ch. 6.6 - Find the gradient of w=x2y3z at (1,2,1).Ch. 6.6 - Starting from the point (1,1), in what direction...Ch. 6.6 - Find the derivative of xy2+yz at (1,1,2) in the...Ch. 6.6 - Find the derivative of zexcosy at (1,0,/3) in the...Ch. 6.6 - Find the gradient of =zsinyxz at the point...Ch. 6.6 - Find a vector normal to the surface x2+y2z=0 at...Ch. 6.6 - Find the direction of the line normal to the...Ch. 6.6 - (a) Find the directional derivative of =x2+sinyxz...Ch. 6.6 - (a) Given =x2y2z, find at (1,1,1). (b) Find the...Ch. 6.6 - For Problems 10 to 14, use a computer as needed to...Ch. 6.6 - For Problems 10 to 14, use a computer as needed to...Ch. 6.6 - For Problems 10 to 14, use a computer as needed to...Ch. 6.6 - For Problems 10 to 14, use a computer as needed to...Ch. 6.6 - For Problems 10 to 14, use a computer as needed to...Ch. 6.6 - Repeat Problem 14b for the following points and...Ch. 6.6 - Show by the Lagrange multiplier method that the...Ch. 6.6 - Find r, where r=x2+y2, using ( 6.7) and also using...Ch. 6.6 - As in Problem 17, find the following gradients in...Ch. 6.6 - As in Problem 17, find the following gradients in...Ch. 6.6 - As in Problem 17, find the following gradients in...Ch. 6.6 - Verify equation ( 6.8 ); that is, find f in...Ch. 6.7 - Compute the divergence and the curl of each of the...Ch. 6.7 - Compute the divergence and the curl of each of the...Ch. 6.7 - Compute the divergence and the curl of each of the...Ch. 6.7 - Compute the divergence and the curl of each of the...Ch. 6.7 - Compute the divergence and the curl of each of the...Ch. 6.7 - Compute the divergence and the curl of each of the...Ch. 6.7 - Compute the divergence and the curl of each of the...Ch. 6.7 - Compute the divergence and the curl of each of the...Ch. 6.7 - Calculate the Laplacian 2 of each of the following...Ch. 6.7 - Calculate the Laplacian 2 of each of the following...Ch. 6.7 - Calculate the Laplacian 2 of each of the following...Ch. 6.7 - Calculate the Laplacian 2 of each of the following...Ch. 6.7 - Calculate the Laplacian 2 of each of the following...Ch. 6.7 - Calculate the Laplacian 2 of each of the following...Ch. 6.7 - Calculate the Laplacian 2 of each of the following...Ch. 6.7 - Calculate the Laplacian 2 of each of the following...Ch. 6.7 - Verify formulas (b), (c), (d), (g), (h), (i), (i),...Ch. 6.7 - For r=xi+yj+zk, evaluate (kr)Ch. 6.7 - For r=xi+yj+zk, evaluate rrCh. 6.7 - For r=xi+yj+zk, evaluate rrCh. 6.8 - Evaluate the line integral x2y2dx2xydy along each...Ch. 6.8 - Evaluate the line integral (x+2y)dx2xdy along each...Ch. 6.8 - Evaluate the line integral xydx+xdy from (0,0) to...Ch. 6.8 - Prob. 4PCh. 6.8 - Find the work done by the force F=x2yixy2j along...Ch. 6.8 - Prob. 6PCh. 6.8 - For the force field F=(y+z)i(x+z)j+(x+y)k, find...Ch. 6.8 - Verify that each of the following force fields is...Ch. 6.8 - Verify that each of the following force fields is...Ch. 6.8 - Verify that each of the following force fields is...Ch. 6.8 - Verify that each of the following force fields is...Ch. 6.8 - Verify that each of the following force fields is...Ch. 6.8 - Verify that each of the following force fields is...Ch. 6.8 - Verify that each of the following force fields is...Ch. 6.8 - Verify that each of the following force fields is...Ch. 6.8 - Given F1=2xi2yzjy2k and F2=yixj (a) Are these...Ch. 6.8 - Which, if either, of the two force fields...Ch. 6.8 - For the force field F=yi+xj+zk, calculate the work...Ch. 6.8 - Show that the electric field...Ch. 6.8 - For motion near the surface of the earth, we...Ch. 6.8 - Consider a uniform distribution of total mass m...Ch. 6.9 - Write out the equations corresponding to ( 9.3 )...Ch. 6.9 - In Problems 2 to 5 use Greens theorem [formula (...Ch. 6.9 - In Problems 2to5useGree n stheorem[formula(9.7)]...Ch. 6.9 - In Problems 2 to 5 use Greens theorem [formula (...Ch. 6.9 - In Problems 2 to 5 use Greens theorem [formula (...Ch. 6.9 - For a simple closed curve C in the plane show by...Ch. 6.9 - Use Problem 6 to show that the area inside the...Ch. 6.9 - Use Problem 6 to find the area inside the curve...Ch. 6.9 - Apply Greens theorem with P=0,Q=12x2 to the...Ch. 6.9 - Evaluate each of the following integrals in the...Ch. 6.9 - Evaluate each of the following integrals in the...Ch. 6.9 - Evaluate each of the following integrals in the...Ch. 6.10 - Evaluate both sides of ( 10.17) if V=r=ix+jy+kz,...Ch. 6.10 - Given V=x2i+y2j+z2k, integrate Vnd over the whole...Ch. 6.10 - Evaluate each of the integrals in Problems 3 to 8...Ch. 6.10 - Evaluate each of the integrals in Problems 3 to 8...Ch. 6.10 - Evaluate each of the integrals in Problems 3 to 8...Ch. 6.10 - Evaluate each of the integrals in Problems 3 to 8...Ch. 6.10 - Evaluate each of the integrals in Problems 3 to 8...Ch. 6.10 - Evaluate each of the integrals in Problems 3 to 8...Ch. 6.10 - If F=xi+yj, calculate Fnd over the part of the...Ch. 6.10 - Evaluate Vnd over the curved surface of the...Ch. 6.10 - Given that B= curl A, use the divergence theorem...Ch. 6.10 - A cylindrical capacitor consists of two long...Ch. 6.10 - Draw a figure similar to Figure 10.6 but with q...Ch. 6.10 - Obtain Coulombs law from Gausss law by considering...Ch. 6.10 - Suppose the density of a fluid varies from point...Ch. 6.10 - The following equations are variously known as...Ch. 6.11 - Do case (b) of Example 1 above.Ch. 6.11 - Given the vector A=x2y2i+2xyj. (a) Find A (b)...Ch. 6.11 - Use either Stokes' theorem or the divergence...Ch. 6.11 - Use either Stokes' theorem or the divergence...Ch. 6.11 - Use either Stokes' theorem or the divergence...Ch. 6.11 - Use either Stokes' theorem or the divergence...Ch. 6.11 - Use either Stokes' theorem or the divergence...Ch. 6.11 - Use either Stokes' theorem or the divergence...Ch. 6.11 - Vnd over the entire surface of the volume in the...Ch. 6.11 - (curlV)nd over the part of the surface z=9x29y2...Ch. 6.11 - Vnd over the entire surface of a cube in the first...Ch. 6.11 - Vdr around the circle (x2)2+(y3)2=9,z=0, where...Ch. 6.11 - (2xi2yj+5k)nd over the surface of a sphere of...Ch. 6.11 - (yixj+zk)dr around the circumference of the circle...Ch. 6.11 - cydx+zdy+xdz, where C is the curve of intersection...Ch. 6.11 - What is wrong with the following proof that there...Ch. 6.11 - Prob. 17PCh. 6.11 - Find vector fields A such that V=curlA for each...Ch. 6.11 - Find vector fields A such that V= curl A for each...Ch. 6.11 - Find vector fields A such that V=curlA for each...Ch. 6.11 - Find vector fields A such that V=curlA for each...Ch. 6.11 - Find vector fields A such that V=curlA for each...Ch. 6.12 - Prob. 1MPCh. 6.12 - If A and B are the diagonals of a parallelogram,...Ch. 6.12 - The force on a charge q moving with velocity...Ch. 6.12 - Prob. 4MPCh. 6.12 - Use Greens theorem (Section 9) to do Problem 8.2.Ch. 6.12 - Prob. 6MPCh. 6.12 - Let F=2i3j+k act at the point (5,1,3). (a) Find...Ch. 6.12 - Prob. 8MPCh. 6.12 - Let F=i5j+2k act at the point (2,1,0). Find the...Ch. 6.12 - Given u=xy+sinz, find (a) the gradient of u at...Ch. 6.12 - Given =z23xy, find (a) grad ; (b) the directional...Ch. 6.12 - Given u=xy+yz+zsinx, find (a) u at (0,1,2); (b)...Ch. 6.12 - Given =x2yz and the point P(3,4,1), find (a) at...Ch. 6.12 - If the temperature is T=x2xy+z2, find (a) the...Ch. 6.12 - Show that...Ch. 6.12 - Given F1=2xzi+yj+x2k and F2=yixj: (a) Which F, if...Ch. 6.12 - Find the value of Fdr along the circle x2+y2=2...Ch. 6.12 - Is F=yi+xzj+zk conservative? Evaluate Fdr from...Ch. 6.12 - Given F1=2yi+(z2x)j+(y+z)k,F2=yi+2xj: (a) Is F1...Ch. 6.12 - In Problems 20 to 31, evaluate each integral in...Ch. 6.12 - In Problems 20 to 31, evaluate each integral in...Ch. 6.12 - In Problems 20 to 31, evaluate each integral in...Ch. 6.12 - In Problems 20 to 31, evaluate each integral in...Ch. 6.12 - In Problems 20 to 31, evaluate each integral in...Ch. 6.12 - In Problems 20 to 31, evaluate each integral in...Ch. 6.12 - In Problems 20 to 31, evaluate each integral in...Ch. 6.12 - In Problems 20 to 31, evaluate each integral in...Ch. 6.12 - In Problems 20 to 31, evaluate each integral in...Ch. 6.12 - In Problems 20 to 31, evaluate each integral in...Ch. 6.12 - In Problems 20 to 31, evaluate each integral in...Ch. 6.12 - In Problems 20 to 31, evaluate each integral in...

    Additional Math Textbook Solutions

    Find more solutions based on key concepts
    Knowledge Booster
    Background pattern image
    Math
    Learn more about
    Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
    Similar questions
    Recommended textbooks for you
    Text book image
    Trigonometry (MindTap Course List)
    Trigonometry
    ISBN:9781337278461
    Author:Ron Larson
    Publisher:Cengage Learning
    Text book image
    Algebra & Trigonometry with Analytic Geometry
    Algebra
    ISBN:9781133382119
    Author:Swokowski
    Publisher:Cengage
    01 - What Is an Integral in Calculus? Learn Calculus Integration and how to Solve Integrals.; Author: Math and Science;https://www.youtube.com/watch?v=BHRWArTFgTs;License: Standard YouTube License, CC-BY