EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 8220102809444
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6.11, Problem 168FEP
Two Carnot heat engines are operating in series such that the heat sink of the first engine serves as the heat source of the second one. If the source temperature of the first engine is 1300 K and the sink temperature of the second engine is 300 K and the thermal efficiencies of both engines are the same, the temperature of the intermediate reservoir is
- (a) 625 K
- (b) 800 K
- (c) 860 K
- (d) 453 K
- (e) 758 K
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
3-55 A multifluid container is connected to a U-tube,
as shown in Fig. P3–55. For the given specific gravities
and fluid column heights, determine the gage pressure at
A. Also determine the height of a mercury column that
would create the same pressure at A. Answers: 0.415 kPa,
0.311 cm
I need help answering parts a and b
Required information
Water initially at 200 kPa and 300°C is contained in a piston-cylinder device fitted with stops. The water is allowed to cool
at constant pressure until it exists as a saturated vapor and the piston rests on the stops. Then the water continues to cool
until the pressure is 100 kPa.
NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part.
Water
200 kPa
300°C
On the T-V diagram, sketch, with respect to the saturation lines, the process curves passing through the initial, intermediate, and final states of the water. Label the
T, P, and V values for end states on the process curves.
Please upload your response/solution by using the controls provided below.
Chapter 6 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 6.11 - Describe an imaginary process that violates both...Ch. 6.11 - Describe an imaginary process that satisfies the...Ch. 6.11 - Describe an imaginary process that satisfies the...Ch. 6.11 - An experimentalist claims to have raised the...Ch. 6.11 - Prob. 5PCh. 6.11 - Consider the process of baking potatoes in a...Ch. 6.11 - What are the characteristics of all heat engines?Ch. 6.11 - What is the KelvinPlanck expression of the second...Ch. 6.11 - Is it possible for a heat engine to operate...Ch. 6.11 - Baseboard heaters are basically electric...
Ch. 6.11 - Does a heat engine that has a thermal efficiency...Ch. 6.11 - In the absence of any friction and other...Ch. 6.11 - Are the efficiencies of all the work-producing...Ch. 6.11 - Consider a pan of water being heated (a) by...Ch. 6.11 - Prob. 15PCh. 6.11 - Prob. 16PCh. 6.11 - A heat engine has a heat input of 3 104 Btu/h and...Ch. 6.11 - Prob. 18PCh. 6.11 - A 600-MW steam power plant, which is cooled by a...Ch. 6.11 - Prob. 20PCh. 6.11 - A heat engine with a thermal efficiency of 45...Ch. 6.11 - A steam power plant with a power output of 150 MW...Ch. 6.11 - An automobile engine consumes fuel at a rate of 22...Ch. 6.11 - Prob. 24PCh. 6.11 - Prob. 25PCh. 6.11 - A coal-burning steam power plant produces a net...Ch. 6.11 - An Ocean Thermal Energy Conversion (OTEC) power...Ch. 6.11 - What is the difference between a refrigerator and...Ch. 6.11 - Prob. 29PCh. 6.11 - In a refrigerator, heat is transferred from a...Ch. 6.11 - A heat pump is a device that absorbs energy from...Ch. 6.11 - Define the coefficient of performance of a...Ch. 6.11 - Define the coefficient of performance of a heat...Ch. 6.11 - Prob. 34PCh. 6.11 - A refrigerator has a COP of 1.5. That is, the...Ch. 6.11 - What is the Clausius expression of the second law...Ch. 6.11 - Show that the KelvinPlanck and the Clausius...Ch. 6.11 - Prob. 38PCh. 6.11 - Determine the COP of a heat pump that supplies...Ch. 6.11 - Prob. 40PCh. 6.11 - Prob. 41PCh. 6.11 - 6–42 An air conditioner removes heat steadily from...Ch. 6.11 - 6–43 A food department is kept at –12°C by a...Ch. 6.11 - A household refrigerator that has a power input of...Ch. 6.11 - When a man returns to his well-sealed house on a...Ch. 6.11 - Prob. 47PCh. 6.11 - Prob. 48PCh. 6.11 - 6–49 A heat pump is used to maintain a house at a...Ch. 6.11 - Prob. 50PCh. 6.11 - A household refrigerator runs one-fourth of the...Ch. 6.11 - Prob. 52PCh. 6.11 - Consider an office room that is being cooled...Ch. 6.11 - Prob. 54PCh. 6.11 - Refrigerant-134a enters the condenser of a...Ch. 6.11 - An inventor claims to have developed a resistance...Ch. 6.11 - Prob. 57PCh. 6.11 - A cold canned drink is left in a warmer room where...Ch. 6.11 - A block slides down an inclined plane with...Ch. 6.11 - Prob. 60PCh. 6.11 - Show that processes that use work for mixing are...Ch. 6.11 - Why does a nonquasi-equilibrium compression...Ch. 6.11 - Prob. 63PCh. 6.11 - Prob. 64PCh. 6.11 - Prob. 65PCh. 6.11 - Why are engineers interested in reversible...Ch. 6.11 - What are the four processes that make up the...Ch. 6.11 - Prob. 68PCh. 6.11 - Prob. 69PCh. 6.11 - Prob. 70PCh. 6.11 - Somebody claims to have developed a new reversible...Ch. 6.11 - Is there any way to increase the efficiency of a...Ch. 6.11 - Consider two actual power plants operating with...Ch. 6.11 - Prob. 74PCh. 6.11 - Prob. 75PCh. 6.11 - 6–76 A Carnot heat engine receives 650 kJ of heat...Ch. 6.11 - A Carnot heat engine operates between a source at...Ch. 6.11 - A heat engine operates between a source at 477C...Ch. 6.11 - Prob. 80PCh. 6.11 - Prob. 81PCh. 6.11 - In tropical climates, the water near the surface...Ch. 6.11 - 6–83 A well-established way of power generation...Ch. 6.11 - Prob. 84PCh. 6.11 - Prob. 85PCh. 6.11 - How can we increase the COP of a Carnot...Ch. 6.11 - In an effort to conserve energy in a heat-engine...Ch. 6.11 - Prob. 88PCh. 6.11 - Prob. 89PCh. 6.11 - 6–90 During an experiment conducted in a room at...Ch. 6.11 - Prob. 91PCh. 6.11 - An air-conditioning system operating on the...Ch. 6.11 - Prob. 93PCh. 6.11 - Prob. 94PCh. 6.11 - Prob. 95PCh. 6.11 - Prob. 96PCh. 6.11 - 6–97 A heat pump is used to maintain a house at...Ch. 6.11 - Prob. 98PCh. 6.11 - Prob. 99PCh. 6.11 - Prob. 100PCh. 6.11 - A commercial refrigerator with refrigerant-134a as...Ch. 6.11 - Prob. 102PCh. 6.11 - A heat pump is to be used for heating a house in...Ch. 6.11 - A Carnot heat pump is to be used to heat a house...Ch. 6.11 - A Carnot heat engine receives heat from a...Ch. 6.11 - Prob. 106PCh. 6.11 - Prob. 107PCh. 6.11 - Prob. 108PCh. 6.11 - Derive an expression for the COP of a completely...Ch. 6.11 - Prob. 110PCh. 6.11 - Prob. 111PCh. 6.11 - Prob. 112PCh. 6.11 - Prob. 113PCh. 6.11 - Someone proposes that the entire...Ch. 6.11 - Prob. 115PCh. 6.11 - Prob. 116PCh. 6.11 - Prob. 117PCh. 6.11 - It is often stated that the refrigerator door...Ch. 6.11 - Prob. 119RPCh. 6.11 - A Carnot heat pump is used to heat and maintain a...Ch. 6.11 - Prob. 121RPCh. 6.11 - Prob. 122RPCh. 6.11 - A refrigeration system uses a water-cooled...Ch. 6.11 - A heat pump with a COP of 2.8 is used to heat an...Ch. 6.11 - Prob. 125RPCh. 6.11 - Consider a Carnot refrigeration cycle executed in...Ch. 6.11 - Consider two Carnot heat engines operating in...Ch. 6.11 - Prob. 129RPCh. 6.11 - A heat engine operates between two reservoirs at...Ch. 6.11 - Prob. 132RPCh. 6.11 - An old gas turbine has an efficiency of 21 percent...Ch. 6.11 - Prob. 134RPCh. 6.11 - Prob. 135RPCh. 6.11 - Prob. 136RPCh. 6.11 - Prob. 137RPCh. 6.11 - Prob. 138RPCh. 6.11 - Prob. 139RPCh. 6.11 - A refrigeration system is to cool bread loaves...Ch. 6.11 - The drinking water needs of a production facility...Ch. 6.11 - Prob. 143RPCh. 6.11 - Prob. 145RPCh. 6.11 - Prob. 146RPCh. 6.11 - Prob. 147RPCh. 6.11 - Prob. 148RPCh. 6.11 - A heat pump with refrigerant-134a as the working...Ch. 6.11 - Prob. 150RPCh. 6.11 - Prob. 151RPCh. 6.11 - Prob. 153RPCh. 6.11 - Prob. 154RPCh. 6.11 - Prob. 155RPCh. 6.11 - A 2.4-m-high 200-m2 house is maintained at 22C by...Ch. 6.11 - Prob. 157FEPCh. 6.11 - Prob. 158FEPCh. 6.11 - A heat pump is absorbing heat from the cold...Ch. 6.11 - A heat engine cycle is executed with steam in the...Ch. 6.11 - A heat engine receives heat from a source at 1000C...Ch. 6.11 - Prob. 162FEPCh. 6.11 - A refrigeration cycle is executed with R-134a...Ch. 6.11 - A heat pump with a COP of 3.2 is used to heat a...Ch. 6.11 - A heat engine cycle is executed with steam in the...Ch. 6.11 - An air-conditioning system operating on the...Ch. 6.11 - Prob. 167FEPCh. 6.11 - Two Carnot heat engines are operating in series...Ch. 6.11 - Consider a Carnot refrigerator and a Carnot heat...Ch. 6.11 - A typical new household refrigerator consumes...Ch. 6.11 - A window air conditioner that consumes 1 kW of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A piston-cylinder device contains 0.87 kg of refrigerant-134a at -10°C. The piston that is free to move has a mass of 12 kg and a diameter of 25 cm. The local atmospheric pressure is 88 kPa. Now, heat is transferred to refrigerant-134a until the temperature is 15°C. Use data from the tables. R-134a -10°C Determine the change in the volume of the cylinder of the refrigerant-134a if the specific volume and enthalpy of R-134a at the initial state of 90.4 kPa and -10°C and at the final state of 90.4 kPa and 15°C are as follows: = 0.2418 m³/kg, h₁ = 247.77 kJ/kg 3 v2 = 0.2670 m³/kg, and h₂ = 268.18 kJ/kg The change in the volume of the cylinder is marrow_forwardA piston-cylinder device contains 0.87 kg of refrigerant-134a at -10°C. The piston that is free to move has a mass of 12 kg and a diameter of 25 cm. The local atmospheric pressure is 88 kPa. Now, heat is transferred to refrigerant-134a until the temperature is 15°C. Use data from the tables. R-134a -10°C Determine the final pressure of the refrigerant-134a. The final pressure is kPa.arrow_forwardThe hydraulic cylinder BC exerts on member AB a force P directed along line BC. The force P must have a 560-N component perpendicular to member AB. A M 45° 30° C Determine the force component along line AB. The force component along line AB is N.arrow_forward
- ! Required information A telephone cable is clamped at A to the pole AB. The tension in the left-hand portion of the cable is given to be T₁ = 815 lb. A 15° 25° B T₂ Using trigonometry, determine the required tension T₂ in the right-hand portion if the resultant R of the forces exerted by the cable at A is to be vertical. The required tension is lb.arrow_forwardWhat are examples of at least three (3) applications of tolerance fitting analysis.arrow_forwardThe primary material used in the production of glass products is silica sand. True or Falsearrow_forward
- Which one of the following is the most common polymer type in fiber-reinforced polymer composites? thermosets thermoplastics elastomers none of the abovearrow_forwardA pattern for a product is larger than the actual finished part. True or Falsearrow_forwardIn the lost foam process, the pattern doesn’t need to be removed from the mold. True or Falsearrow_forward
- Tempering eliminates internal stresses in glass. True or Falsearrow_forwardThermoset polymers can be recycled with little to no degradation in properties. True or Falsearrow_forwardTwo forces are applied as shown to a hook support. The magnitude of P is 38 N. 50 N 25° DG a 터 Using trigonometry, determine the required angle a such that the resultant R of the two forces applied to the support will be horizontal. The value of a isarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY