EBK THERMODYNAMICS: AN ENGINEERING APPR
EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 8220102809444
Author: CENGEL
Publisher: YUZU
bartleby

Videos

Question
Book Icon
Chapter 6.11, Problem 147RP
To determine

The cost of energy “vented out” by the fans in 1 h.

Expert Solution & Answer
Check Mark

Answer to Problem 147RP

The cost of energy “vented out” by the fans in 1 h is $0.123_.

Explanation of Solution

Determine the density of air at the indoor conditions.

ρo=PoRTo (I)

Here, the house maintain a pressure is Po, the universal gas constant is R, and the house maintain a temperature is T0.

Determine interior volume of the house per hour

ν˙air=w×l (II)

Here, the width of the house is w and the length of the house is l.

Determine the mass flow rate of air vented out.

m˙air=ρoν˙air (III)

Determine the rate of energy loss by the ventilating fans.

Q˙loss,fan=m˙aircp(TindoorToutdoor) (IV)

Here, the specific heat of air at room temperature is cP, the indoor air vented out at temperature is Tindoor, and the outdoor air temperature is Toutdoor.

Determine the amount of fuel energy loss by “vented out”.

Fuel energy loss=Q˙loss,fan×Δt/ηfurnace (V)

Here, the fan takes time is Δt and the efficiency of the furnace is ηfurnace.

Determine the amount of cost of the heat “vented out” per hour.

Moneyloss=(Fuelenergyloss)×(Unitcostofenergy) (VI)

Conclusion:

From the Table A-1, “Molar mass, gas constant, and critical-point properties” to obtain the value of gas constant of air as 0.287kPam3/kgK.

From the Table A-2a, “Ideal-gas specific heats of various common gases” to obtain the value of specific heat of air at room temperature as 1.0kJ/kg°C.

Substitute 92 kPa for Po, 0.287kPam3/kgK for R, and 22°C for To in Equation (I).

ρo=92kPa(0.287kPam3/kgK)×(22°C)=92kPa(0.287kPam3/kgK)×(22°C+273)=92kPa84.665kPam3/kg=1.0866kg/m3

     1.087kg/m3

Substitute 200m2/h for w and 2.8m/h for l in Equation (II).

ν˙air=(200m2/h)×(2.8m/h)=560m3/h

Substitute 1.087kg/m3 for ρo and 560m3 for ν˙air in Equation (III).

m˙air=(1.087kg/m3)×(560m3/h)=608.72kg/h=608.72kg/h×(1kg/s3600kg/h)=0.169089kg/s

Substitute 0.169089kg/s for m˙air, 1.0kJ/kg°C for cp, 22°C for Tindoor and 5°C for Toutdoor in Equation (IV).

Q˙loss,fan=(0.169089kg/s)×(1.0kJ/kg°C)×(22°C5°C)=(0.169089kg/s)×(1.0kJ/kg°C)×(17°C)=2.8745kJ/s=2.8745kJ/s×(1kW1kJ/s)

          =2.8745kW

Substitute 2.8745kW for Q˙loss,fan, 1 h for Δt, and 0.96 for ηfurnace in Equation (V).

Fuel energy loss=(2.8745kW)×(1h)/(0.96)=(2.8745kW)×(1.041667h)=2.994kWh

Substitute 2.994kWh for fuel energy loss, $1.20/therm for unit cost of energy in Equation (VI).

Moneyloss=(2.994kWh)×($1.20/therm)=(2.994kWh)×($1.20/therm)×(1therm29.3kWh)=$0.1226$0.123

Thus, the cost of energy “vented out” by the fans in 1 h is $0.123_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
THERMODYNAMICS 11 kg of air is heated from 24 to 84 degrees Celsius in a piston-cylinder device by passing electricity via a resistive heater within the cylinder. The pressure within the cylinder is remained constant at 300kPa during the procedure, and a 78kJ heat loss occurs. What is the kWh value of the supplied electric energy?
you are asked to design a heating system for a swimming pool that is 2m deep 25 m long and 25 m wide. your client desires that the heating system to be large enough to raise the water temperature from 20 to 30° C in 3h.the rate of heat loss from the water to the air at the outdoor design conditions is determined to be 960W/m^2 and the heater must also be able to maintain the pool at 30° C at those conditions.heat loses to the ground are expected to be small and can be disregarded.the heater considered is a natural gas furnace whose efficiency is 80 percent. what heater size (in kW input) would you recommend to your client?
The rate of heat transferred between air and condensing refrigerant in a condenser is 70 kW. The condenser has an air-side area of 210 m2 and a U value based on this area of 0.037 kW/m2 -oC. It is supplied with 6.6 m3/s of air which has a density of 1.15 kgm/m3. If the condensing temperature is 55 oC, Determine the temperature of inlet air. (for decimal places for final answer)

Chapter 6 Solutions

EBK THERMODYNAMICS: AN ENGINEERING APPR

Ch. 6.11 - Does a heat engine that has a thermal efficiency...Ch. 6.11 - In the absence of any friction and other...Ch. 6.11 - Are the efficiencies of all the work-producing...Ch. 6.11 - Consider a pan of water being heated (a) by...Ch. 6.11 - Prob. 15PCh. 6.11 - Prob. 16PCh. 6.11 - A heat engine has a heat input of 3 104 Btu/h and...Ch. 6.11 - Prob. 18PCh. 6.11 - A 600-MW steam power plant, which is cooled by a...Ch. 6.11 - Prob. 20PCh. 6.11 - A heat engine with a thermal efficiency of 45...Ch. 6.11 - A steam power plant with a power output of 150 MW...Ch. 6.11 - An automobile engine consumes fuel at a rate of 22...Ch. 6.11 - Prob. 24PCh. 6.11 - Prob. 25PCh. 6.11 - A coal-burning steam power plant produces a net...Ch. 6.11 - An Ocean Thermal Energy Conversion (OTEC) power...Ch. 6.11 - What is the difference between a refrigerator and...Ch. 6.11 - Prob. 29PCh. 6.11 - In a refrigerator, heat is transferred from a...Ch. 6.11 - A heat pump is a device that absorbs energy from...Ch. 6.11 - Define the coefficient of performance of a...Ch. 6.11 - Define the coefficient of performance of a heat...Ch. 6.11 - Prob. 34PCh. 6.11 - A refrigerator has a COP of 1.5. That is, the...Ch. 6.11 - What is the Clausius expression of the second law...Ch. 6.11 - Show that the KelvinPlanck and the Clausius...Ch. 6.11 - Prob. 38PCh. 6.11 - Determine the COP of a heat pump that supplies...Ch. 6.11 - Prob. 40PCh. 6.11 - Prob. 41PCh. 6.11 - 6–42 An air conditioner removes heat steadily from...Ch. 6.11 - 6–43 A food department is kept at –12°C by a...Ch. 6.11 - A household refrigerator that has a power input of...Ch. 6.11 - When a man returns to his well-sealed house on a...Ch. 6.11 - Prob. 47PCh. 6.11 - Prob. 48PCh. 6.11 - 6–49 A heat pump is used to maintain a house at a...Ch. 6.11 - Prob. 50PCh. 6.11 - A household refrigerator runs one-fourth of the...Ch. 6.11 - Prob. 52PCh. 6.11 - Consider an office room that is being cooled...Ch. 6.11 - Prob. 54PCh. 6.11 - Refrigerant-134a enters the condenser of a...Ch. 6.11 - An inventor claims to have developed a resistance...Ch. 6.11 - Prob. 57PCh. 6.11 - A cold canned drink is left in a warmer room where...Ch. 6.11 - A block slides down an inclined plane with...Ch. 6.11 - Prob. 60PCh. 6.11 - Show that processes that use work for mixing are...Ch. 6.11 - Why does a nonquasi-equilibrium compression...Ch. 6.11 - Prob. 63PCh. 6.11 - Prob. 64PCh. 6.11 - Prob. 65PCh. 6.11 - Why are engineers interested in reversible...Ch. 6.11 - What are the four processes that make up the...Ch. 6.11 - Prob. 68PCh. 6.11 - Prob. 69PCh. 6.11 - Prob. 70PCh. 6.11 - Somebody claims to have developed a new reversible...Ch. 6.11 - Is there any way to increase the efficiency of a...Ch. 6.11 - Consider two actual power plants operating with...Ch. 6.11 - Prob. 74PCh. 6.11 - Prob. 75PCh. 6.11 - 6–76 A Carnot heat engine receives 650 kJ of heat...Ch. 6.11 - A Carnot heat engine operates between a source at...Ch. 6.11 - A heat engine operates between a source at 477C...Ch. 6.11 - Prob. 80PCh. 6.11 - Prob. 81PCh. 6.11 - In tropical climates, the water near the surface...Ch. 6.11 - 6–83 A well-established way of power generation...Ch. 6.11 - Prob. 84PCh. 6.11 - Prob. 85PCh. 6.11 - How can we increase the COP of a Carnot...Ch. 6.11 - In an effort to conserve energy in a heat-engine...Ch. 6.11 - Prob. 88PCh. 6.11 - Prob. 89PCh. 6.11 - 6–90 During an experiment conducted in a room at...Ch. 6.11 - Prob. 91PCh. 6.11 - An air-conditioning system operating on the...Ch. 6.11 - Prob. 93PCh. 6.11 - Prob. 94PCh. 6.11 - Prob. 95PCh. 6.11 - Prob. 96PCh. 6.11 - 6–97 A heat pump is used to maintain a house at...Ch. 6.11 - Prob. 98PCh. 6.11 - Prob. 99PCh. 6.11 - Prob. 100PCh. 6.11 - A commercial refrigerator with refrigerant-134a as...Ch. 6.11 - Prob. 102PCh. 6.11 - A heat pump is to be used for heating a house in...Ch. 6.11 - A Carnot heat pump is to be used to heat a house...Ch. 6.11 - A Carnot heat engine receives heat from a...Ch. 6.11 - Prob. 106PCh. 6.11 - Prob. 107PCh. 6.11 - Prob. 108PCh. 6.11 - Derive an expression for the COP of a completely...Ch. 6.11 - Prob. 110PCh. 6.11 - Prob. 111PCh. 6.11 - Prob. 112PCh. 6.11 - Prob. 113PCh. 6.11 - Someone proposes that the entire...Ch. 6.11 - Prob. 115PCh. 6.11 - Prob. 116PCh. 6.11 - Prob. 117PCh. 6.11 - It is often stated that the refrigerator door...Ch. 6.11 - Prob. 119RPCh. 6.11 - A Carnot heat pump is used to heat and maintain a...Ch. 6.11 - Prob. 121RPCh. 6.11 - Prob. 122RPCh. 6.11 - A refrigeration system uses a water-cooled...Ch. 6.11 - A heat pump with a COP of 2.8 is used to heat an...Ch. 6.11 - Prob. 125RPCh. 6.11 - Consider a Carnot refrigeration cycle executed in...Ch. 6.11 - Consider two Carnot heat engines operating in...Ch. 6.11 - Prob. 129RPCh. 6.11 - A heat engine operates between two reservoirs at...Ch. 6.11 - Prob. 132RPCh. 6.11 - An old gas turbine has an efficiency of 21 percent...Ch. 6.11 - Prob. 134RPCh. 6.11 - Prob. 135RPCh. 6.11 - Prob. 136RPCh. 6.11 - Prob. 137RPCh. 6.11 - Prob. 138RPCh. 6.11 - Prob. 139RPCh. 6.11 - A refrigeration system is to cool bread loaves...Ch. 6.11 - The drinking water needs of a production facility...Ch. 6.11 - Prob. 143RPCh. 6.11 - Prob. 145RPCh. 6.11 - Prob. 146RPCh. 6.11 - Prob. 147RPCh. 6.11 - Prob. 148RPCh. 6.11 - A heat pump with refrigerant-134a as the working...Ch. 6.11 - Prob. 150RPCh. 6.11 - Prob. 151RPCh. 6.11 - Prob. 153RPCh. 6.11 - Prob. 154RPCh. 6.11 - Prob. 155RPCh. 6.11 - A 2.4-m-high 200-m2 house is maintained at 22C by...Ch. 6.11 - Prob. 157FEPCh. 6.11 - Prob. 158FEPCh. 6.11 - A heat pump is absorbing heat from the cold...Ch. 6.11 - A heat engine cycle is executed with steam in the...Ch. 6.11 - A heat engine receives heat from a source at 1000C...Ch. 6.11 - Prob. 162FEPCh. 6.11 - A refrigeration cycle is executed with R-134a...Ch. 6.11 - A heat pump with a COP of 3.2 is used to heat a...Ch. 6.11 - A heat engine cycle is executed with steam in the...Ch. 6.11 - An air-conditioning system operating on the...Ch. 6.11 - Prob. 167FEPCh. 6.11 - Two Carnot heat engines are operating in series...Ch. 6.11 - Consider a Carnot refrigerator and a Carnot heat...Ch. 6.11 - A typical new household refrigerator consumes...Ch. 6.11 - A window air conditioner that consumes 1 kW of...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license