The cost of energy “vented out” by the fans in 1 h.
Answer to Problem 150RP
The cost of energy “vented out” by the fans in 1 h is
Explanation of Solution
Determine the density of air at the indoor conditions.
Here, the house maintain a pressure is
Determine interior volume of the house per hour
Here, the width of the house is
Determine the mass flow rate of air vented out.
Determine the rate of energy loss by the ventilating fans.
Here, the specific heat of air at room temperature is
Determine the amount of fuel energy loss by “vented out”.
Here, the fan takes time is
Determine the amount of cost of the heat “vented out” per hour.
Conclusion:
From the Table A-1, “Molar mass, gas constant, and critical-point properties” to obtain the value of gas constant of air as
From the Table A-2a, “Ideal-gas specific heats of various common gases” to obtain the value of specific heat of air at room temperature as
Substitute 92 kPa for
Substitute
Substitute
Substitute
Substitute
Substitute
Thus, the cost of energy “vented out” by the fans in 1 h is
Want to see more full solutions like this?
Chapter 6 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
- Determine the quantity (volume) of saline water in a steam generator. The heat energy of 1624 kJ is supplied to saline water in the steam generator to heat from 24°C to 101°C for the generation of water vapor, Take the density & specific heat of the solution as 1015 kg/m³ & 4.6 J/kg°K respectively. Solution: Change in Temperature (in K) Mass of the saltwater (in kg) Quantity (Volume) of saltwater (in m3)arrow_forwardIt is common knowledge that the temperature rises as it is compressed. An inventor thought about using this high temperature air to heat buildings. He used a compressor driven by an electric motor. The inventor claims that the compressed hot air system is 25% more efficient than a resistance heating system that provides an equivalent amount of heating. Is this claim valid, or is this just another perpetual motion machine?arrow_forwardA water tube boiler has a capacity of 1000 kg/hr of steam. The factor of evaporation is 1.3, boiler rating is 200%, boiler efficiency is 5%, heating surface area is 0.91 m2/boiler Hp, and the heating value of fuel is 18,400 Kcal/kg. The total coal available in the bunker is 50,000 kg. Determine total number of hours to consume the available fuel.arrow_forward
- The average thermal conductivity of the walls (including windows) and roof of a house in the figure shown below is 4.8 10-4 kW/m · °C, and their average thickness is 20.8 cm. The house is heated with natural gas, with a heat of combustion (energy given off per cubic meter of gas burned) of 9,300 kcal/m3. How many cubic meters of gas must be burned each day to maintain an inside temperature of 25.9°C if the outside temperature is 0.0°C? Disregard surface air layers, radiation, and energy loss by heat through the ground. m3 A house has a rectangular base and a roof that peaks along a line above the center of the house and parallel to the length of the house. This roof slopes downward from the peak to each edge at an angle of 37.0° with the horizontal. The length of the front of the house is 10.0 meters. The width of the house is 8.00 meters. The height from the front of the house up to the edge of the roof is 5.00 meters.arrow_forwardThe average thermal conductivity of the walls (including windows) and roof of a house in the figure shown below is 4.8 10-4 kW/m · °C, and their average thickness is 20.8 cm. The house is heated with natural gas, with a heat of combustion (energy given off per cubic meter of gas burned) of 9,300 kcal/m3. How many cubic meters of gas must be burned each day to maintain an inside temperature of 25.9°C if the outside temperature is 0.0°C? Disregard surface air layers, radiation, and energy loss by heat through the ground.arrow_forwardm = 0.9000 kg of water is heated with P = 481 W electric heater for t = 39 min. During this time the temperature of the water rises from T₁ = 335 K to its boiling point and me = 176 g of water evaporates. How much of the electric energy used by the heater is transferred to the water during the heating? Please consider that produced energy can be obtained by the product of power and time, so E = P t. Please use for the kJ specific enthalpy of evaporation hf = 2260 kJ and heat capacity of water values p = 4.1900 kgK What is the Percentage of electric energy transferred to water? EP = 1 % Insert only 3 most significant digits of your answer without rounding. Quantity Symbol Total mass of water Mass of water that evaporates Power of electric heater Heating time Percentage of electric energy transferred to water Initial temperature of water Boiling point of water Specific enthalpy of vaporization for water • ÉASZ SÁN m me P t EP T₁ Tb he Specific heat capacity of liquid water Electric…arrow_forward
- m = 0.9000 kg of water is heated with P = 481 W electric heater for t = 39 min . During this time the temperature of the water rises from T₁ = 335 K to its boiling point and me = 176 g of water evaporates. How much of the electric energy used by the heater is transferred to the water during the heating? Please consider that produced energy can be obtained by the product of power and time, so E = P t. Please use for the specific enthalpy of evaporation hf = 2260 and heat capacity of water values cp = 4.1900 kJ kgK What is the Percentage of electric energy transferred to water? EP = %arrow_forwardCalculate the amount of energy required in BTU to heat the air in a 10°F house 30 by 50 by 40 ft and increase the temperature by 7OF at constant pressure.arrow_forwardAt winter design conditions, a house is projected to lose heat at a rate of 60,000 Btu/h. The internal heat gain from people, lights, and appliances is estimated to be 6000 Btu/h. If this house is to be heated by electric resistance heaters, deter- mine the required rated power of these heaters in kW to main- tain the house at constant temperature.arrow_forward
- A gasoline engine is at a location where the temperature is measured to be 14.2 °C and produces 347 KW at 5800 rpm while consuming 0.0184 kg's of fuel. During operation, data shows that its mechanical energy loss is 18 %, the actual volume of air going into each cylinder is 80% (the volumetric efficiency has a negligible variation), and the actual fuel-to-air ratio is 0.065. What were the engine parameters at sea level conditions if the pressure here is 100.3 kPa and the temeratur here is 18 Uc hotter than that of the alevated conditions? Determine at sea-level conditions the ISFC in ka/kW-hr Use four (4) decimal places in your solution and answer.arrow_forwardA gasoline engine is at a location where the temperature is measured to be 14.2 °C and produces 347 KW at 5800 rpm while consuming 0.0184 kg's of fuel. During operation, data shows that its mechanical energy loss is 18 %, the actual volume of air going into each cylinder is 80% (the volumetric efficiency has a negligible variation), and the actual fuel-to-air ratio is 0.065. What were the engine parameters at sea level conditions if the pressure here is 100.3 kPa and the temeratur here is 18 Uc hotter than that of the alevated conditions? Determine at sea-level conditions the ISFC in ka/kW-hrarrow_forwardThe Figure shows a solar collector panel embedded in a roof. The panel, which has a surface area of 24 ft2, receives energy from the sun at a rate of 200 Btu/h per ft2 of collector surface. Twenty-five percent of the incoming energy is lost to the surroundings. The remaining energy is used to heat domestic hot water from 90 to 120°F. The water passes through the solar collector with a negligible pressure drop. Neglecting kinetic and potential effects, determine at steady state how many gallons of water at 120°F the collector generates per hour.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY