THERMODYNAMICS: ENG APPROACH LOOSELEAF
9th Edition
ISBN: 9781266084584
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6.11, Problem 101P
A heat pump operates on a Carnot heat pump cycle with a COP of 12.5. It keeps a space at 24°C by consuming 2.15 kW of power. Determine the temperature of the reservoir from which the heat is absorbed and the heating load provided by the heat pump.
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
y(0)=1,
Using Laplace transforms solve the following differential
equations :
11) y"-4y+4y=0,
12) y+2y+2y=0,
y(0)=2.1,
y'(0) = 3.9
y'(0)=-3.
13) y+7y+12y=21e",
y(0)=3.5,
y'(0)=-10.
14) +9y=10e.
y(0)=0,
y'(0) = 0.
15) y+3y+2.25y=91³ +64,
y(0)=1,
y'(0) = 31.5
16) -6y+5y= 29 cos(21),
y(0)=3.2,
y'(0)=6.2
17) "+2y+2y=0,
y(0)=0,
y'(0)=1.
18) +2y+17y=0,
y(0)=0,
y'(0)=12.
19) y-4y+5y=0,
y(0)=1,
y'(0) = 2.
20) 9y-6y+y=0,
y(0)=3,
y'(0)=1.
21) -2y+10y=0,
y(0)=3,
y'(0)=3.
4. Consider the rectangulan
2535
Let
16
a
and
section discussed
977b
+
class.
in
ie make a
M
thin"
rectangle, Can you
you show that
Q = Go {a² = x² } .
Imax =
2 Ga
ты
J =
1. Consider a
circular shaft in torsion
that
of radius r=b
has a key way
as shown,
circle of
radius a
Let us try the solution
x₁
(5,0) = k (6² = r²) (1- 2 awso
1.1 Does this solve the problem for the
stres rer
1,2 Solve for
is and 23.
Chapter 6 Solutions
THERMODYNAMICS: ENG APPROACH LOOSELEAF
Ch. 6.11 - A mechanic claims to have developed a car engine...Ch. 6.11 - Describe an imaginary process that violates both...Ch. 6.11 - Describe an imaginary process that satisfies the...Ch. 6.11 - Describe an imaginary process that satisfies the...Ch. 6.11 - An experimentalist claims to have raised the...Ch. 6.11 - Consider the process of baking potatoes in a...Ch. 6.11 - Prob. 7PCh. 6.11 - What are the characteristics of all heat engines?Ch. 6.11 - What is the KelvinPlanck expression of the second...Ch. 6.11 - Is it possible for a heat engine to operate...
Ch. 6.11 - Does a heat engine that has a thermal efficiency...Ch. 6.11 - In the absence of any friction and other...Ch. 6.11 - Are the efficiencies of all the work-producing...Ch. 6.11 - Baseboard heaters are basically electric...Ch. 6.11 - Consider a pan of water being heated (a) by...Ch. 6.11 - A heat engine has a total heat input of 1.3 kJ and...Ch. 6.11 - A steam power plant receives heat from a furnace...Ch. 6.11 - A heat engine has a heat input of 3 104 Btu/h and...Ch. 6.11 - A 600-MW steam power plant, which is cooled by a...Ch. 6.11 - A heat engine with a thermal efficiency of 45...Ch. 6.11 - A heat engine that propels a ship produces 500...Ch. 6.11 - A steam power plant with a power output of 150 MW...Ch. 6.11 - An automobile engine consumes fuel at a rate of 22...Ch. 6.11 - Solar energy stored in large bodies of water,...Ch. 6.11 - A coal-burning steam power plant produces a net...Ch. 6.11 - An Ocean Thermal Energy Conversion (OTEC) power...Ch. 6.11 - Prob. 27PCh. 6.11 - Prob. 29PCh. 6.11 - What is the difference between a refrigerator and...Ch. 6.11 - Prob. 31PCh. 6.11 - Define the coefficient of performance of a...Ch. 6.11 - Define the coefficient of performance of a heat...Ch. 6.11 - Prob. 34PCh. 6.11 - A refrigerator has a COP of 1.5. That is, the...Ch. 6.11 - In a refrigerator, heat is transferred from a...Ch. 6.11 - A heat pump is a device that absorbs energy from...Ch. 6.11 - What is the Clausius expression of the second law...Ch. 6.11 - Show that the KelvinPlanck and the Clausius...Ch. 6.11 - The coefficient of performance of a residential...Ch. 6.11 - A food freezer is to produce a 5-kW cooling...Ch. 6.11 - An automotive air conditioner produces a 1-kW...Ch. 6.11 - A food refrigerator is to provide a 15,000-kJ/h...Ch. 6.11 - Prob. 44PCh. 6.11 - Determine the COP of a heat pump that supplies...Ch. 6.11 - Prob. 46PCh. 6.11 - A heat pump with a COP of 1.4 is to produce a...Ch. 6.11 - An air conditioner removes heat steadily from a...Ch. 6.11 - A household refrigerator that has a power input of...Ch. 6.11 - When a man returns to his well-sealed house on a...Ch. 6.11 - Water enters an ice machine at 55F and leaves as...Ch. 6.11 - A refrigerator is used to cool water from 23 to 5C...Ch. 6.11 - A household refrigerator runs one-fourth of the...Ch. 6.11 - Consider an office room that is being cooled...Ch. 6.11 - A house that was heated by electric resistance...Ch. 6.11 - Refrigerant-134a enters the condenser of a...Ch. 6.11 - Refrigerant-134a enters the evaporator coils...Ch. 6.11 - An inventor claims to have developed a resistance...Ch. 6.11 - Prob. 60PCh. 6.11 - Why are engineers interested in reversible...Ch. 6.11 - A cold canned drink is left in a warmer room where...Ch. 6.11 - A block slides down an inclined plane with...Ch. 6.11 - Prob. 64PCh. 6.11 - Prob. 65PCh. 6.11 - Show that processes that use work for mixing are...Ch. 6.11 - Why does a nonquasi-equilibrium compression...Ch. 6.11 - Prob. 68PCh. 6.11 - Prob. 69PCh. 6.11 - What are the four processes that make up the...Ch. 6.11 - Prob. 71PCh. 6.11 - Prob. 72PCh. 6.11 - Prob. 73PCh. 6.11 - Somebody claims to have developed a new reversible...Ch. 6.11 - Is there any way to increase the efficiency of a...Ch. 6.11 - Consider two actual power plants operating with...Ch. 6.11 - You are an engineer in an electric-generation...Ch. 6.11 - Prob. 78PCh. 6.11 - A thermodynamicist claims to have developed a heat...Ch. 6.11 - A heat engine is operating on a Carnot cycle and...Ch. 6.11 - A completely reversible heat engine operates with...Ch. 6.11 - An inventor claims to have developed a heat engine...Ch. 6.11 - A Carnot heat engine operates between a source at...Ch. 6.11 - A heat engine is operating on a Carnot cycle and...Ch. 6.11 - A heat engine operates between a source at 477C...Ch. 6.11 - An experimentalist claims that, based on his...Ch. 6.11 - In tropical climates, the water near the surface...Ch. 6.11 - Prob. 89PCh. 6.11 - Prob. 90PCh. 6.11 - Prob. 91PCh. 6.11 - Prob. 92PCh. 6.11 - How can we increase the COP of a Carnot...Ch. 6.11 - In an effort to conserve energy in a heat-engine...Ch. 6.11 - Prob. 95PCh. 6.11 - Prob. 96PCh. 6.11 - A thermodynamicist claims to have developed a heat...Ch. 6.11 - Determine the minimum work per unit of heat...Ch. 6.11 - Prob. 99PCh. 6.11 - An air-conditioning system operating on the...Ch. 6.11 - A heat pump operates on a Carnot heat pump cycle...Ch. 6.11 - An air-conditioning system is used to maintain a...Ch. 6.11 - A Carnot refrigerator absorbs heat from a space at...Ch. 6.11 - Prob. 104PCh. 6.11 - A Carnot refrigerator operates in a room in which...Ch. 6.11 - Prob. 106PCh. 6.11 - A commercial refrigerator with refrigerant-134a as...Ch. 6.11 - Prob. 108PCh. 6.11 - A heat pump is to be used for heating a house in...Ch. 6.11 - A completely reversible heat pump has a COP of 1.6...Ch. 6.11 - A Carnot heat pump is to be used to heat a house...Ch. 6.11 - A Carnot heat engine receives heat from a...Ch. 6.11 - Prob. 113PCh. 6.11 - Derive an expression for the COP of a completely...Ch. 6.11 - Calculate and plot the COP of a completely...Ch. 6.11 - Prob. 116PCh. 6.11 - Prob. 117PCh. 6.11 - Prob. 118PCh. 6.11 - Someone proposes that the entire...Ch. 6.11 - Prob. 120PCh. 6.11 - Prob. 121PCh. 6.11 - Prob. 122PCh. 6.11 - It is commonly recommended that hot foods be...Ch. 6.11 - It is often stated that the refrigerator door...Ch. 6.11 - Prob. 125RPCh. 6.11 - Prob. 126RPCh. 6.11 - Prob. 127RPCh. 6.11 - A Carnot heat pump is used to heat and maintain a...Ch. 6.11 - A refrigeration system uses a water-cooled...Ch. 6.11 - A refrigeration system is to cool bread loaves...Ch. 6.11 - A heat pump with a COP of 2.8 is used to heat an...Ch. 6.11 - Prob. 132RPCh. 6.11 - Consider a Carnot heat-engine cycle executed in a...Ch. 6.11 - Prob. 134RPCh. 6.11 - Consider a Carnot refrigeration cycle executed in...Ch. 6.11 - Prob. 137RPCh. 6.11 - Consider two Carnot heat engines operating in...Ch. 6.11 - A heat engine operates between two reservoirs at...Ch. 6.11 - An old gas turbine has an efficiency of 21 percent...Ch. 6.11 - Prob. 141RPCh. 6.11 - Prob. 142RPCh. 6.11 - Prob. 143RPCh. 6.11 - The drinking water needs of a production facility...Ch. 6.11 - Prob. 145RPCh. 6.11 - Prob. 147RPCh. 6.11 - Prob. 148RPCh. 6.11 - Prob. 149RPCh. 6.11 - Prob. 150RPCh. 6.11 - Prob. 151RPCh. 6.11 - A heat pump with refrigerant-134a as the working...Ch. 6.11 - Prob. 153RPCh. 6.11 - Prob. 155RPCh. 6.11 - Prob. 156RPCh. 6.11 - Prob. 157RPCh. 6.11 - Prove that a refrigerators COP cannot exceed that...Ch. 6.11 - Consider a Carnot refrigerator and a Carnot heat...Ch. 6.11 - A 2.4-m-high 200-m2 house is maintained at 22C by...Ch. 6.11 - A window air conditioner that consumes 1 kW of...Ch. 6.11 - The drinking water needs of an office are met by...Ch. 6.11 - The label on a washing machine indicates that the...Ch. 6.11 - A heat pump is absorbing heat from the cold...Ch. 6.11 - A heat engine cycle is executed with steam in the...Ch. 6.11 - A heat pump cycle is executed with R134a under the...Ch. 6.11 - A refrigeration cycle is executed with R-134a...Ch. 6.11 - A heat pump with a COP of 3.2 is used to heat a...Ch. 6.11 - A heat engine cycle is executed with steam in the...Ch. 6.11 - A heat engine receives heat from a source at 1000C...Ch. 6.11 - An air-conditioning system operating on the...Ch. 6.11 - A refrigerator is removing heat from a cold medium...Ch. 6.11 - Two Carnot heat engines are operating in series...Ch. 6.11 - A typical new household refrigerator consumes...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 3. - a For an elliptical cross that the tangent to section resultant shear can you s stress is show ellipse with the same 24 i ratio of eccentricity, in passes through to point alb that in question, it + Parrow_forward2. Consider the rod with an elliptical that strain 4 a Cross secton considered in class, Integrate the was displacement displacements, relations to obtain thearrow_forwardPlease answer Oxygen at 300 kPa and 90°C flowing at an average velocity of 3 m/s is expanded in an adiabatic nozzle. What is the maximum velocity of the oxygen at the outlet of this nozzle when the outlet pressure is 60 kPa? Use the table containing the ideal gas specific heats of various common gases. The maximum velocity of the oxygen at the outlet of this nozzle is 532.5 Numeric ResponseEdit Unavailable. 532.5 incorrect.m/s.arrow_forward
- A container filled with 70 kg of liquid water at 95°C is placed in a 90-m3 room that is initially at 12°C. Thermal equilibrium is established after a while as a result of heat transfer between the water and the air in the room. Assume the room is at the sea level, well sealed, and heavily insulated. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the amount of heat transfer between the water and the air in the room. The amount of heat transfer between the water and the air in the room is kJ.arrow_forwardA strain gauge rosette that is attached to the surface of a stressed component gives 3 readings (ɛa = A, b = B, &c = C). If the strain gauge rosette is of the D° type (indicating the angle between each of the gauges), construct a Mohr's Strain Circle overleaf. You should assume that gauge A is aligned along the x-axis. Using the Mohr's Strain Circle calculate the: (i) principal strains (ε1, 2)? (ii) principal angles (1, 2)? You should measure these anticlockwise from the y-axis. (iii) maximum shear strain in the plane (ymax)?arrow_forwardQ1. If the yield stress (σy) of a material is 375MPa, determine whether yield is predicted for the stresses acting on both the elements shown below using: (a) Tresca Criterion (b) Von Mises Criterion P Element A R S Element B Note: your values for P (vertical load on Element A) should be negative (i.e. corresponding to a compressive vertical load).arrow_forward
- Q. After a puncture a driver is attempting to remove a wheel nut by applying a force of P KN to one end of a wheel brace as shown in Fig. 1. In cross-section the brace is a hollow steel tube (see section aa) of internal diameter r mm and external diameter q mm. wheel nut n Position S P m r q Section aa Fig, 1 (a) Calculate (i) the twisting moment, (ii) the bending moment, and (iii) the shear force in the brace at position S due to the applied load P. (b) Calculate (i) the shear stress due to twisting, and (ii) the bending stress at position S. Note that the shear force will not produce any shear stress at S. (c) Calculate the maximum shearing stress in the brace at position S using the Maximum Shear Stress Criterion. 2 Mechanics of Materials 2 Tutorials Portfolio: Exercise 5 (d) If the maximum permissible shear stress in the steel is 200 MPa, determine the maximum torque that can be applied by the brace without the risk of failure at S.arrow_forwardCalculate the first 5 Fourier series coefficients (A0-4 and B1-5 ) for the estimated R wave.arrow_forwardRefrigerant-134a is expanded isentropically from 600 kPa and 70°C at the inlet of a steady-flow turbine to 100 kPa at the outlet. The outlet area is 1 m2, and the inlet area is 0.5 m2. Calculate the inlet and outlet velocities when the mass flow rate is 0.65 kg/s. Use the tables for R-134a. The inlet velocity is m/s. The outlet velocity is m/s.arrow_forward
- A container filled with 70 kg of liquid water at 95°C is placed in a 90-m3 room that is initially at 12°C. Thermal equilibrium is established after a while as a result of heat transfer between the water and the air in the room. Assume the room is at the sea level, well sealed, and heavily insulated. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the final equilibrium temperature. Use the table containing the ideal gas specific heats of various common gases. The final equilibrium temperature is °C.arrow_forwardSteam at 100 psia and 650°F is expanded adiabatically in a closed system to 10 psia. Determine the work produced, in Btu/lbm, and the final temperature of steam for an isentropic expansion efficiency of 80 percent. Use steam tables. The work produced is Btu/lbm. The final temperature of steam is °F.arrow_forwardComplet the solution : Vavg Ti Te Ts Q hexp Nuexp htheo Re Nutheo Error (m/s) (*C) (*C) (*C) (W) 2.11 18.8 21.3 45.8 2.61 18.5 20.8 46.3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Refrigeration and Air Conditioning Technology (Mi...Mechanical EngineeringISBN:9781305578296Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill JohnsonPublisher:Cengage LearningPrinciples of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning

Refrigeration and Air Conditioning Technology (Mi...
Mechanical Engineering
ISBN:9781305578296
Author:John Tomczyk, Eugene Silberstein, Bill Whitman, Bill Johnson
Publisher:Cengage Learning

Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
The Refrigeration Cycle Explained - The Four Major Components; Author: HVAC Know It All;https://www.youtube.com/watch?v=zfciSvOZDUY;License: Standard YouTube License, CC-BY