Position from velocity Consider an object moving along a line with the given velocity v and initial position a. Determine the position function, for t ≥ 0, using the antiderivative method b. Determine the position function, for t ≥ 0, using the Fundamental Theorem of Calculus ( Theorem 6.1 ). Check for agreement with the answer to part (a). 21. v ( t ) = 9 − t 2 on [ 0 , 4 ] ; s ( 0 ) = − 2
Position from velocity Consider an object moving along a line with the given velocity v and initial position a. Determine the position function, for t ≥ 0, using the antiderivative method b. Determine the position function, for t ≥ 0, using the Fundamental Theorem of Calculus ( Theorem 6.1 ). Check for agreement with the answer to part (a). 21. v ( t ) = 9 − t 2 on [ 0 , 4 ] ; s ( 0 ) = − 2
Position from velocity Consider an object moving along a line with the given velocity v and initial position
a. Determine the position function, for t ≥ 0, using the antiderivative method
b. Determine the position function, for t ≥ 0, using the Fundamental Theorem of Calculus (Theorem 6.1). Check for agreement with the answer to part (a).
21.
v
(
t
)
=
9
−
t
2
on
[
0
,
4
]
;
s
(
0
)
=
−
2
DO NOT GIVE THE WRONG ANSWER
SHOW ME ALL THE NEEDED STEPS
11: A rectangle has a base that is growing at a rate of 3 inches per second and a height that is shrinking at a rate of one inch per second. When the base is 12 inches and the height is 5 inches, at what rate is the area of the rectangle changing?
please answer by showing all the dfalowing necessary step
DO NOT GIVE ME THE WRONG ANSWER
The sides of a cube of ice are melting at a rate of 1 inch per hour. When its volume is 64 cubic inches, at what rate is its volume changing?
Sox & Sin (px) dx
0
Chapter 6 Solutions
Calculus: Early Transcendentals and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition) (Briggs, Cochran, Gillett & Schulz, Calculus Series)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Fundamental Theorem of Calculus 1 | Geometric Idea + Chain Rule Example; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=hAfpl8jLFOs;License: Standard YouTube License, CC-BY