Position from velocity Consider an object moving along a line with the given velocity v and initial position a. Determine the position function, for t ≥ 0, using the antiderivative method b. Determine the position function, for t ≥ 0, using the Fundamental Theorem of Calculus ( Theorem 6.1 ). Check for agreement with the answer to part (a). 21. v ( t ) = 9 − t 2 on [ 0 , 4 ] ; s ( 0 ) = − 2
Position from velocity Consider an object moving along a line with the given velocity v and initial position a. Determine the position function, for t ≥ 0, using the antiderivative method b. Determine the position function, for t ≥ 0, using the Fundamental Theorem of Calculus ( Theorem 6.1 ). Check for agreement with the answer to part (a). 21. v ( t ) = 9 − t 2 on [ 0 , 4 ] ; s ( 0 ) = − 2
Position from velocity Consider an object moving along a line with the given velocity v and initial position
a. Determine the position function, for t ≥ 0, using the antiderivative method
b. Determine the position function, for t ≥ 0, using the Fundamental Theorem of Calculus (Theorem 6.1). Check for agreement with the answer to part (a).
21.
v
(
t
)
=
9
−
t
2
on
[
0
,
4
]
;
s
(
0
)
=
−
2
2. [-/1 Points]
DETAILS
MY NOTES
SESSCALCET2 6.4.006.MI.
Use the Table of Integrals to evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.)
7y2
y²
11
dy
Need Help?
Read It
Master It
SUBMIT ANSWER
3. [-/1 Points]
DETAILS
MY NOTES
SESSCALCET2 6.4.009.
Use the Table of Integrals to evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.)
tan³(12/z) dz
Need Help?
Read It
Watch It
SUBMIT ANSWER
4. [-/1 Points]
DETAILS
MY NOTES
SESSCALCET2 6.4.014.
Use the Table of Integrals to evaluate the integral. (Use C for the constant of integration.)
5 sinб12x dx
Need Help?
Read It
Please refer below
y"-9y+20y= 80t-156
y(0) = −6, y'(0) = 5
y(t) =
Chapter 6 Solutions
Calculus: Early Transcendentals and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition) (Briggs, Cochran, Gillett & Schulz, Calculus Series)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Fundamental Theorem of Calculus 1 | Geometric Idea + Chain Rule Example; Author: Dr. Trefor Bazett;https://www.youtube.com/watch?v=hAfpl8jLFOs;License: Standard YouTube License, CC-BY