EBK ELECTRIC CIRCUITS
EBK ELECTRIC CIRCUITS
10th Edition
ISBN: 9780100801790
Author: Riedel
Publisher: YUZU
Question
Book Icon
Chapter 6.1, Problem 1AP

(a)

To determine

Find the value of initial voltage drop v(0) across the inductor for the given circuit.

(b)

To determine

Find the instant of time at which the voltage across the inductor terminals is zero.

(c)

To determine

Find the expression for the power delivered to the inductor.

(d)

To determine

Calculate the instant at which the power delivered to the inductor is maximum.

(e)

To determine

Find the maximum power delivered to the inductor in the given circuit.

(f)

To determine

Find the instant of time at which the energy stored in the inductor is maximum.

(g)

To determine

Calculate the maximum energy stored in the inductor.

Blurred answer
15:31
Students have asked these similar questions
I need help checking if its correct -E1 + VR1 + VR4 – E2 + VR3 = 0 -------> Loop 1 (a) R1(I1) + R4(I1 – I2) + R3(I1) = E1 + E2 ------> Loop 1 (b) R1(I1) + R4(I1) - R4(I2) + R3(I1) = E1 + E2 ------> Loop 1 (c) (R1 + R3 + R4) (I1)  - R4(I2)    = E1 + E2 ------> Loop 1 (d) Now that we have loop 1 equation will procced on finding the equation of I2 current loop. However, a reminder that because we are going in a clockwise direction, it goes against the direction of the current. As such we will get an equation for the matrix that will be:   E2 – VR4 – VR2 + E3 = 0 ------> Loop 2 (a) -R4(I2 – I1) -R2(I2) = -E2 – E3  ------> Loop 2 (b) -R4(I2) + R4(I1) - R2(I2) = -E2 – E3  -----> Loop 2 (c)                                     R4(I1) – (R4 + R2)(I2) = -E2 – E3  -----> Loop 2 (d) These two equations will be implemented to the matrix formula I = inv(A) * b       R11                        R12   (R1 + R3 + R4)     -R4     -R4     R4 + R2
10.2 For each of the following groups of sources, determineif the three sources constitute a balanced source, and if it is,determine if it has a positive or negative phase sequence.(a) va(t) = 169.7cos(377t +15◦) Vvb(t) = 169.7cos(377t −105◦) Vvc(t) = 169.7sin(377t −135◦) V(b) va(t) = 311cos(wt −12◦) Vvb(t) = 311cos(wt +108◦) Vvc(t) = 311cos(wt +228◦) V(c) V1 = 140 −140◦ VV2 = 114 −20◦ VV3 = 124 100◦ V
Apply single-phase equivalency to determine the linecurrents in the Y-D network shown in Fig. P10.13. The loadimpedances are Zab = Zbc = Zca = (25+ j5) W

Chapter 6 Solutions

EBK ELECTRIC CIRCUITS

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Text book image
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Text book image
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Text book image
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Text book image
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,