WebAssign for Seeds' The Solar System
10th Edition
ISBN: 9780357724729
Author: Seeds
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 9RQ
To determine
Give the reason for the optical astronomers placed their telescopes at the tops of the mountain and the radio astronomers placed their telescopes in the deep valleys.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Why do optical astronomers often put their telescopes at the tops of mountains, while radio
astronomers sometimes put their telescopes in deep valleys?
The telescope of a spy satellite is reputed to be able to resolve objects 9 cm apart from an altitude of 180 km above the surface of Earth.
1) What is the diameter, in meters, of the telescope’s aperture, if its resolution is limited only by diffraction effects? Take 550 nm for the wavelength of light.
What is the limit of resolution for a telescope lens with a diameter of 120 cm when it observes a star at a distance of 4 light-years? Use the wavelength of l = 550 nm in your calculations.
Chapter 6 Solutions
WebAssign for Seeds' The Solar System
Ch. 6 - Prob. 1RQCh. 6 - Prob. 2RQCh. 6 - Prob. 3RQCh. 6 - Prob. 4RQCh. 6 - Does red light have a higher or lower energy than...Ch. 6 - Prob. 6RQCh. 6 - Prob. 7RQCh. 6 - Prob. 8RQCh. 6 - Prob. 9RQCh. 6 - Prob. 10RQ
Ch. 6 - Prob. 11RQCh. 6 - Prob. 12RQCh. 6 - Prob. 13RQCh. 6 - Prob. 14RQCh. 6 - Prob. 15RQCh. 6 - Prob. 16RQCh. 6 - Prob. 17RQCh. 6 - Prob. 18RQCh. 6 - Prob. 19RQCh. 6 - Prob. 20RQCh. 6 - Prob. 21RQCh. 6 - Prob. 22RQCh. 6 - Prob. 23RQCh. 6 - Prob. 24RQCh. 6 - Prob. 1PCh. 6 - Prob. 2PCh. 6 - What is the frequency and wavelength of an FM...Ch. 6 - Prob. 4PCh. 6 - Prob. 5PCh. 6 - Prob. 6PCh. 6 - Prob. 7PCh. 6 - Prob. 8PCh. 6 - Prob. 9PCh. 6 - Prob. 10PCh. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - Prob. 13PCh. 6 - Prob. 14PCh. 6 - Prob. 15PCh. 6 - Prob. 1SPCh. 6 - Prob. 2SPCh. 6 - Prob. 2LLCh. 6 - Prob. 3LLCh. 6 - Prob. 4LLCh. 6 - Prob. 5LLCh. 6 - Prob. 6LLCh. 6 - Prob. 7LLCh. 6 - Prob. 8LL
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- When astronomers discuss the apertures of their telescopes, they say bigger is better. Explain why.arrow_forwardHow much more light can be gathered by a telescope that is 8 m in diameter than by your fully dark-adapted eye at 7 mm?arrow_forwardHow much more light can the James Webb Space Telescope (with its 6-m diameter mirror) gather than the Hubble Space Telescope (with a diameter of 2.4 m)?arrow_forward
- People are often bothered when they discover that reflecting telescopes have a second mirror in the middle to bring the light out to an accessible focus where big instruments can be mounted. “Don’t you lose light?” people ask. Well, yes, you do, but there is no better alternative. You can estimate how much light is lost by such an arrangement. The primary mirror (the one at the bottom in Figure 6.6) of the Gemini North telescope is 8 m in diameter. The secondary mirror at the top is about 1 m in diameter. Use the formula for the area of a circle to estimate what fraction of the light is blocked by the secondary mirror. Figure 6.6 Focus Arrangements for Reflecting Telescopes. Reflecting telescopes have different options for where the light is brought to a focus. With prime focus, light is detected where it comes to a focus after reflecting from the primary mirror. With Newtonian focus, light is reflected by a small secondary mirror off to one side, where it can be detected (see also Figure 6.5). Most large professional telescopes have a Cassegrain focus in which light is reflected by the secondary mirror down through a hole in the primary mirror to an observing station below the telescope.arrow_forwardThe dean of a university located near the ocean (who was not a science major in college) proposes building an infrared telescope right on campus and operating it in a nice heated dome so that astronomers will be comfortable on cold winter nights. Criticize this proposal, giving your reasoning.arrow_forwardH does the resolving power of the 5-rn telescope on Mount Palomar near San Diego compare with that of the 2.5-rn Hubble Space Telescope? Why does the HST generally still outperform the Palomar 5-rn telescope?arrow_forward
- The large space telescope that has been placed into an Earth orbit has an aperture diameter of 1.4 meters. What angular resolution will this telescope achieve for visible light of wavelength 2 = 6.5 x 10-7 m? Write your answer in "seconds of arc".arrow_forwardWhy are x-ray telescopes all in space, rather than on the Earth?arrow_forwardA space telescope built to get the smallest resolution for radio wavelengths between 100 and 1000 meters. Discuss the pros and cons of this telescope and location. Consider wavelength region and diameter when talking about smallest angular resolution.arrow_forward
- Blue light has a wavelength of about 400 nm. Red light has a wavelength of about 700 nm. If both types of light are observed with the same telescope, which type of light will yield the best resolution, and by what factor?arrow_forwardAstronauts observing from a space station need a telescope with a resolving power of 0.6 arc second at a wavelength of 530 nm and a magnifying power of 220. Design a telescope to meet their needs.What will its light-gathering power be, compared with a dark-adapted human eye? (Assume that the pupil of your eye can open to a diameter of about 0.8 cm in dark conditions.)(State the necessary primary diameter of the telescope, in m, and the ratio of the focal lengths below.)arrow_forwardspy satellite orbiting 410 km above Earth is supposedly capable of counting individual people in a crowd in visual-wavelength images. Assume that the satellite's cameras operate at a wavelength of 550 nm. Assume an average person has a size of 0.6 m as seen from above. Estimate the minimum telescope diameter that the satellite must carry. (Hint: Use The small-angle formula angular diameter (arc seconds) 2.06 105 = linear diameter distance to convert linear size to angular size.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning