Concept explainers
a.
Obtain the sampling distribution of
a.
Answer to Problem 8P
The sampling distribution of the mean
The sampling distribution of the mean
The sampling distribution of the mean
The sampling distribution of the mean
Explanation of Solution
It is given that 33% of taxpayers in the year 2010 with adjusted gross incomes between $30,000 and $60,000 itemized deductions on their federal income tax return. The mean amount of deductions for the given population of taxpayers is
The sampling distribution of the mean is approximately normal when the
The mean of the
In this context,
For the random sample of 30 taxpayers, the mean and standard deviation is calculated as,
Thus, for the random sample of 30 taxpayers with adjusted gross income between $30,000 and $60,000, the sampling distribution of the mean
For the random sample of 50 taxpayers, the mean and standard deviation is calculated as,
Thus, for the random sample of 50 taxpayers with adjusted gross income between $30,000 and $60,000, the sampling distribution of the mean
For the random sample of 100 taxpayers, the mean and standard deviation is calculated as,
Thus, for the random sample of 100 taxpayers with adjusted gross income between $30,000 and $60,000, the sampling distribution of the mean
For the random sample of 400 taxpayers, the mean and standard deviation is calculated as,
Thus, for the random sample of 400 taxpayers with adjusted gross income between $30,000 and $60,000, the sampling distribution of the mean
b.
Explain the advantage of using larger sample size.
b.
Explanation of Solution
From part (a), it can be observed that when sample size increases the standard error of the sample mean decreases.
Thus, larger sample reduces the standard error which results in a more accurate estimate of the population mean.
Want to see more full solutions like this?
Chapter 6 Solutions
Essentials of Business Analytics (MindTap Course List)
- F Make a box plot from the five-number summary: 100, 105, 120, 135, 140. harrow_forward14 Is the standard deviation affected by skewed data? If so, how? foldarrow_forwardFrequency 15 Suppose that your friend believes his gambling partner plays with a loaded die (not fair). He shows you a graph of the outcomes of the games played with this die (see the following figure). Based on this graph, do you agree with this person? Why or why not? 65 Single Die Outcomes: Graph 1 60 55 50 45 40 1 2 3 4 Outcome 55 6arrow_forward
- lie y H 16 The first month's telephone bills for new customers of a certain phone company are shown in the following figure. The histogram showing the bills is misleading, however. Explain why, and suggest a solution. Frequency 140 120 100 80 60 40 20 0 0 20 40 60 80 Telephone Bill ($) 100 120arrow_forward25 ptical rule applies because t Does the empirical rule apply to the data set shown in the following figure? Explain. 2 6 5 Frequency 3 сл 2 1 0 2 4 6 8 00arrow_forward24 Line graphs typically connect the dots that represent the data values over time. If the time increments between the dots are large, explain why the line graph can be somewhat misleading.arrow_forward
- 17 Make a box plot from the five-number summary: 3, 4, 7, 16, 17. 992) waarrow_forward12 10 - 8 6 4 29 0 Interpret the shape, center and spread of the following box plot. brill smo slob.nl bagharrow_forwardSuppose that a driver's test has a mean score of 7 (out of 10 points) and standard deviation 0.5. a. Explain why you can reasonably assume that the data set of the test scores is mound-shaped. b. For the drivers taking this particular test, where should 68 percent of them score? c. Where should 95 percent of them score? d. Where should 99.7 percent of them score? Sarrow_forward
- 13 Can the mean of a data set be higher than most of the values in the set? If so, how? Can the median of a set be higher than most of the values? If so, how? srit to estaarrow_forwardA random variable X takes values 0 and 1 with probabilities q and p, respectively, with q+p=1. find the moment generating function of X and show that all the moments about the origin equal p. (Note- Please include as much detailed solution/steps in the solution to understand, Thank you!)arrow_forward1 (Expected Shortfall) Suppose the price of an asset Pt follows a normal random walk, i.e., Pt = Po+r₁ + ... + rt with r₁, r2,... being IID N(μ, o²). Po+r1+. ⚫ Suppose the VaR of rt is VaRq(rt) at level q, find the VaR of the price in T days, i.e., VaRq(Pt – Pt–T). - • If ESq(rt) = A, find ES₁(Pt – Pt–T).arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt