Thuy Dau, Ngoc Bui, Sam Su, and Lan Voung conducted a survey as to how long customers at Lucky claimed to waft in the checkout line until their turn. Let X time in line. Table 6.3 displays the ordered real data (In minutes): Table 6.3 a. Calculate the sample mean and the sample standard deviation. b. Construct a histogram. c. Draw a smooth curve through the midpoints of the tops of the bars. d. In words, describe the shape of your histogram and smooth curve. e. Let the sample mean approximate p and the sample standard deviation approximate a. The distribution of X can then be approximated by X ∼ ________________) f. Use the distribution in part e to calculate the probability that a person will wait fewer than 6.1 minutes. g. Determine the cumulative relative frequency f waiting less than 6.1 minutes. h. Why aren’t the answers to pan f and part g exactly the same? j, Why are the answers to part f and part g as close as they are? j. If only ten customers has been surveyed rather than 50, do you think the answers to part f and part g would have been closer together or farther apart? Explain vow conclusion. 0.50 4.25 5 6 7.25 1.75 4.25 5.25 6 7.25 2 4.25 5.25 6.25 7.25 2.25 4.25 5.5 6.25 7.75 2.25 4.5 5.5 6.5 8 2.5 4.75 5.5 6.5 8.25 2.75 4.75 5.75 6.5 9.5 3.25 4.75 5.75 6.75 9.5 3.75 5 6 6.75 9.75 3.75 5 6 6.75 10.75
Thuy Dau, Ngoc Bui, Sam Su, and Lan Voung conducted a survey as to how long customers at Lucky claimed to waft in the checkout line until their turn. Let X time in line. Table 6.3 displays the ordered real data (In minutes): Table 6.3 a. Calculate the sample mean and the sample standard deviation. b. Construct a histogram. c. Draw a smooth curve through the midpoints of the tops of the bars. d. In words, describe the shape of your histogram and smooth curve. e. Let the sample mean approximate p and the sample standard deviation approximate a. The distribution of X can then be approximated by X ∼ ________________) f. Use the distribution in part e to calculate the probability that a person will wait fewer than 6.1 minutes. g. Determine the cumulative relative frequency f waiting less than 6.1 minutes. h. Why aren’t the answers to pan f and part g exactly the same? j, Why are the answers to part f and part g as close as they are? j. If only ten customers has been surveyed rather than 50, do you think the answers to part f and part g would have been closer together or farther apart? Explain vow conclusion. 0.50 4.25 5 6 7.25 1.75 4.25 5.25 6 7.25 2 4.25 5.25 6.25 7.25 2.25 4.25 5.5 6.25 7.75 2.25 4.5 5.5 6.5 8 2.5 4.75 5.5 6.5 8.25 2.75 4.75 5.75 6.5 9.5 3.25 4.75 5.75 6.75 9.5 3.75 5 6 6.75 9.75 3.75 5 6 6.75 10.75
Thuy Dau, Ngoc Bui, Sam Su, and Lan Voung conducted a survey as to how long customers at Lucky claimed to waft in the checkout line until their turn. Let X time in line. Table 6.3 displays the ordered real data (In minutes):
Table 6.3
a. Calculate the sample mean and the sample standard deviation.
b. Construct a histogram.
c. Draw a smooth curve through the midpoints of the tops of the bars.
d. In words, describe the shape of your histogram and smooth curve.
e. Let the sample mean approximate p and the sample standard deviation approximate a. The distribution of X can then be approximated by X
∼
________________)
f. Use the distribution in part e to calculate the probability that a person will wait fewer than 6.1 minutes.
g. Determine the cumulative relative frequency f waiting less than 6.1 minutes.
h. Why aren’t the answers to pan f and part g exactly the same?
j, Why are the answers to part f and part g as close as they are?
j. If only ten customers has been surveyed rather than 50, do you think the answers to part f and part g would have been closer together or farther apart? Explain vow conclusion.
0.50
4.25
5
6
7.25
1.75
4.25
5.25
6
7.25
2
4.25
5.25
6.25
7.25
2.25
4.25
5.5
6.25
7.75
2.25
4.5
5.5
6.5
8
2.5
4.75
5.5
6.5
8.25
2.75
4.75
5.75
6.5
9.5
3.25
4.75
5.75
6.75
9.5
3.75
5
6
6.75
9.75
3.75
5
6
6.75
10.75
Features Features Normal distribution is characterized by two parameters, mean (µ) and standard deviation (σ). When graphed, the mean represents the center of the bell curve and the graph is perfectly symmetric about the center. The mean, median, and mode are all equal for a normal distribution. The standard deviation measures the data's spread from the center. The higher the standard deviation, the more the data is spread out and the flatter the bell curve looks. Variance is another commonly used measure of the spread of the distribution and is equal to the square of the standard deviation.
1.2.17. (!) Let G,, be the graph whose vertices are the permutations of (1,..., n}, with
two permutations a₁, ..., a,, and b₁, ..., b, adjacent if they differ by interchanging a pair
of adjacent entries (G3 shown below). Prove that G,, is connected.
132
123
213
312
321
231
You are planning an experiment to determine the effect of the brand of gasoline and the weight of a car on gas mileage measured in miles per gallon. You will use a single test car, adding weights so that its total weight is 3000, 3500, or 4000 pounds. The car will drive on a test track at each weight using each of Amoco, Marathon, and Speedway gasoline. Which is the best way to organize the study?
Start with 3000 pounds and Amoco and run the car on the test track. Then do 3500 and 4000 pounds. Change to Marathon and go through the three weights in order. Then change to Speedway and do the three weights in order once more.
Start with 3000 pounds and Amoco and run the car on the test track. Then change to Marathon and then to Speedway without changing the weight. Then add weights to get 3500 pounds and go through the three gasolines in the same order.Then change to 4000 pounds and do the three gasolines in order again.
Choose a gasoline at random, and run the car with this gasoline at…
AP1.2 A child is 40 inches tall, which places her at the 90th percentile of all children of similar age. The heights for children of this age form an approximately Normal distribution with a mean of 38 inches. Based on this information, what is the standard deviation of the heights of all children of this age?
0.20 inches (c) 0.65 inches (e) 1.56 inches
0.31 inches (d) 1.21 inches
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Hypothesis Testing using Confidence Interval Approach; Author: BUM2413 Applied Statistics UMP;https://www.youtube.com/watch?v=Hq1l3e9pLyY;License: Standard YouTube License, CC-BY
Hypothesis Testing - Difference of Two Means - Student's -Distribution & Normal Distribution; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=UcZwyzwWU7o;License: Standard Youtube License