College Physics: A Strategic Approach (3rd Edition)
3rd Edition
ISBN: 9780321879721
Author: Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 7P
The radius of the earth’s very nearly circular orbit around the sun is 1.50 × 1011 m. Find the magnitude of the earth’s (a) velocity and (b) centripetal acceleration as it travels around the sun. Assume a year of 365 days.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An Earth satellite moves in a circular orbit 555 km above Earth's surface with a period of 95.55 min. What are (a) the speed
and (b) the magnitude of the centripetal acceleration of the satellite?
(a) Number
i
Units
(b) Number
i
Units
The earth rotates once per day about an axis passing through the north and south poles, an axis that is perpendicular to the plane of
the equator. Assuming the earth is a sphere with a radius of 6.38 x 106 m, determine the speed and centripetal acceleration of a person
situated (a) at the equator and (b) at a latitude of 50.0° north of the equator.
(a) v =
(b) v=
ac =
i
i
i
i
Units
Units
Units
Units
0
Re
P
The earth rotates once per day about an axis passing through the north and south poles, an axis that is perpendicular to the plane of
the equator. Assuming the earth is a sphere with a radius of 6.38 x 106 m, determine the speed and centripetal acceleration of a
person situated (a) at the equator and (b) at a latitude of 18.0 ° north of the equator.
Re
(a) v=
i
Units
ac =
Units
(b) v =
i
Units
ac =
Units
>
>
>
Chapter 6 Solutions
College Physics: A Strategic Approach (3rd Edition)
Ch. 6 - A cyclist goes around a level, circular track at...Ch. 6 - In uniform circular motion, which of the following...Ch. 6 - A particle moving along a straight line can have...Ch. 6 - Would having four-wheel drive on a car make it...Ch. 6 - Large birds like pheasants often walk short...Ch. 6 - When you drive fast on the highway with muddy...Ch. 6 - A ball on a string moves in a vertical circle as...Ch. 6 - Give an everyday example of circular motion for...Ch. 6 - Give an everyday example of circular motion for...Ch. 6 - Its been proposed that future space stations...
Ch. 6 - A car coasts at a constant speed over a circular...Ch. 6 - In Figure Q6.11, at the instant shown, is the...Ch. 6 - Riding in the back of a pickup truck can be very...Ch. 6 - Playground swings move through an arc of a circle....Ch. 6 - Variation in your apparent weight is desirable...Ch. 6 - A small projectile is launched parallel to the...Ch. 6 - Why is it impossible for an astronaut inside an...Ch. 6 - If every object in the universe feels an...Ch. 6 - A mountain climbers weight is slightly less on the...Ch. 6 - Is the earths gravitational force on the sun...Ch. 6 - A ball on a string moves around a complete circle,...Ch. 6 - As seen from above, a car rounds the curved path...Ch. 6 - As we saw in the chapter, wings on race cars push...Ch. 6 - Suppose you and a friend, each of mass 60 kg, go...Ch. 6 - The cylindrical space station in Figure Q6.25, 200...Ch. 6 - Two cylindrical space stations, the second four...Ch. 6 - The radius of Jupiter is 11 times that of earth,...Ch. 6 - A newly discovered planet has twice the mass and...Ch. 6 - Suppose one night the radius of the earth doubled...Ch. 6 - Currently, the moon goes around the earth once...Ch. 6 - Two planets orbit a star. You can ignore the...Ch. 6 - A 5.0-m-diameter merry-go-round is turning with a...Ch. 6 - The blade on a table saw spins at 3450 rpm. Its...Ch. 6 - An old-fashioned LP record rotates at 3313rpm. a....Ch. 6 - A typical hard disk in a computer spins at 5400...Ch. 6 - A CD-ROM drive in a computer spins the...Ch. 6 - The horse on a carousel is 4.0 m from the central...Ch. 6 - The radius of the earths very nearly circular...Ch. 6 - Modern wind turbines are larger than they appear,...Ch. 6 - Your roommate is working on his bicycle and has...Ch. 6 - Wind turbines designed for offshore installations...Ch. 6 - To withstand g-forces of up to 10g, caused by...Ch. 6 - A typical running track is an oval with...Ch. 6 - Figure P6.13 is a birds-eye view of particles on a...Ch. 6 - In short-track speed skating, the track has...Ch. 6 - A 200 g block on a 50-cm-long string swings in a...Ch. 6 - A cyclist is rounding a 20-m-radius curve at 12...Ch. 6 - A 1500 kg car drives around a flat 200-m-diameter...Ch. 6 - A fast pitch softball player does a windmill...Ch. 6 - A baseball pitching machine works by rotating a...Ch. 6 - A wind turbine has 12,000 kg blades that are 38 m...Ch. 6 - Youre driving your pickup truck around a curve...Ch. 6 - You have seen dogs shake to shed water from their...Ch. 6 - Gibbons, small Asian apes, move by brachiation,...Ch. 6 - The passengers in a roller coaster car feel 50%...Ch. 6 - You hold a bucket in one hand. In the bucket is a...Ch. 6 - A roller coaster car is going over the top of a...Ch. 6 - As a roller coaster car crosses the top of a...Ch. 6 - An 80-ft-diameter Ferris wheel rotates once every...Ch. 6 - A typical laboratory centrifuge rotates at 4000...Ch. 6 - A satellite orbiting the moon very near the...Ch. 6 - Spacecraft have been sent to Mars in recent years....Ch. 6 - The centers of a 10 kg lead ball and a 100 g lead...Ch. 6 - The gravitational force of a star on an orbiting...Ch. 6 - The free-fall acceleration at the surface of...Ch. 6 - What is the ratio of the suns gravitational force...Ch. 6 - Suppose the free-fall acceleration at some...Ch. 6 - In recent years, astronomers have found planets...Ch. 6 - In recent years, astronomers have found planets...Ch. 6 - a. What is the gravitational force of the sun on...Ch. 6 - What is the value of g on the surface of Saturn?...Ch. 6 - What is the free-fall acceleration at the surface...Ch. 6 - Planet X orbits the star Omega with a year that is...Ch. 6 - Prob. 43PCh. 6 - The International Space Station is in a...Ch. 6 - The asteroid belt circles the sun between the...Ch. 6 - An earth satellite moves in a circular orbit at a...Ch. 6 - In recent years, scientists have discovered...Ch. 6 - In recent years, scientists have discovered...Ch. 6 - In recent years, scientists have discovered...Ch. 6 - How fast must a plane fly along the earths equator...Ch. 6 - The car in Figure P6.51 travels at a constant...Ch. 6 - In the Bohr model of the hydrogen atom, an...Ch. 6 - A 75 kg man weighs himself at the north pole and...Ch. 6 - A 1500 kg car takes a 50-m-radius unbanked curve...Ch. 6 - A 500 g ball swings in a vertical circle at the...Ch. 6 - A 5.0 g coin is placed 15 cm from the center of a...Ch. 6 - A conical pendulum is formed by attaching a 500 g...Ch. 6 - In an old-fashioned amusement park ride,...Ch. 6 - The 0.20 kg puck on the frictionless, horizontal...Ch. 6 - While at the county fair, you decide to ride the...Ch. 6 - A car drives over the top of a hill that has a...Ch. 6 - A 100 g ball on a 60-cm-long string is swung in a...Ch. 6 - Prob. 63GPCh. 6 - The ultracentrifuge is an important tool for...Ch. 6 - A sensitive gravimeter at a mountain observatory...Ch. 6 - Suppose we could shrink the earth without changing...Ch. 6 - Planet Z is 10,000 km in diameter. The free-fall...Ch. 6 - Prob. 68GPCh. 6 - Prob. 69GPCh. 6 - How long will it take a rock dropped from 2.0 m...Ch. 6 - A 20 kg sphere is at the origin and a 10 kg sphere...Ch. 6 - a. At what height above the earth is the free-fall...Ch. 6 - Mars has a small moon, Phobos, that orbits with a...Ch. 6 - You are the science officer on a visit to a...Ch. 6 - Europa, a satellite of Jupiter, is believed to...Ch. 6 - The direction of the net force on the craft is A....Ch. 6 - Suppose a spacecraft orbits the moon in a very...Ch. 6 - How much time does it take for the spacecraft to...Ch. 6 - The material that comprises the side of the moon...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
The Cosmic Perspective Fundamentals (2nd Edition)
What is the volume of one mole of air, at room temperature and 1 atm pressure?
An Introduction to Thermal Physics
Q34.14 The bottom of the passenger-side mirror on your car notes, “Objects in mirror are closer than they appea...
University Physics (14th Edition)
36.40 BIO If you can read the bottom row of your doctor’s eye chart, your eye has a resolving power of 1 arcmin...
University Physics with Modern Physics (14th Edition)
The force, when you push against a wall with your fingers, they bend.
Conceptual Physics (12th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An Earth satellite moves in a circular orbit 878 km above Earth's surface with a period of 102.3 min. What are (a) the speed and (b) the magnitude of the centripetal acceleration of the satellite?arrow_forwardThe earth rotates once per day about an axis passing through the north and south poles, an axis that is perpendicular to the plane of the equator. Assuming the earth is a sphere with a radius of 6.38 x 106 m, determine the speed and centripetal acceleration of a person situated (a) at the equator and (b) at a latitude of 33.0 ° north of the equator.arrow_forwardThe earth rotates once per day about an axis passing through the north and south poles, an axis that is perpendicular to the plane of the equator. Assuming the earth is a sphere with a radius of 6.38 x 106 m, determine the speed and centripetal acceleration of a person situated (a) at the equator and (b) at a latitude of 24.0° north of the equator. (a) V = ac = (b) v = ac = i i i Units Units Units Units < < Rearrow_forward
- The earth rotates once per day about an axis passing through the north and south poles, an axis that is perpendicular to the plane of the equator. Assuming the earth is a sphere with a radius of 6.38 x 106 m, determine the speed and centripetal acceleration of a person situated (a) at the equator and (b) at a latitude of 77.0° north of the equator. (a) V = ac= (b) v = ac = i i i i Units Units Units Units m/s m/s^2 0 Rearrow_forwardCan you please help me with this question please? I really appreciate your help! Thank you!arrow_forwardAn Earth satellite moves in a circular orbit 640 km (uniform circular motion) above Earth’s surface with a period of 98.0 min. What are (a) the speed and (b) the magnitude of the centripetal acceleration of the satellite?arrow_forward
- The earth rotates once per day about an axis passing through the north and south poles, an axis that is perpendicular to the plane of the equator. Assuming the earth is a sphere with a radius of 6.38 x 106 m, determine the speed and centripetal acceleration of a person situated (a) at the equator (b) at a latitude of 76.0 ° north of the equator (All answers need to be in 3 sig figs)arrow_forwardThe radius of the earth’s orbit around the sun (assumed circular) is 1.50 x 108 km and the earth travels around this orbit in 365 days. (a) What is the magnitude of the orbital velocity of the earth in m/s? (b) What is the radial acceleration of the earth toward the sun in m/s2?arrow_forwardThe Moon orbits the Earth in an approximately circular path. The velocity of the moon as a function of time is given by:vx = −v sin(?t)vy = v cos(?t)where v = 945 m/s and ? = 2.46 10-6 radians/s. What is the average acceleration of the Moon over the following time intervals? For each, give the magnitude and direction as an angle measured counterclockwise from the positive x-axis.(a) from t = 0 to t = 0.200 daysmagnitude ______m/s2direction ______° counterclockwise from the +x-axis (b) from t = 0 to t = 0.0020 daysmagnitude ______m/s2direction ______° counterclockwise from the +x-axisarrow_forward
- The earth rotates once per day about an axis passing through the north and south poles, an axis that is perpendicular to the plane of the equator. Assuming the earth is a sphere with a radius of 6.38 x 106 m, determine the speed and centripetal acceleration of a person situated (a) at the equator and (b) at a latitude of 57.0 ° north of the equator. Re (а) v %3 Units ac Units (а) v 3D Units ac Units II IIarrow_forwardA particle has a centripetal acceleration of ac = 7.47 m/s2. It is executing uniform circular motion and the shortest straight-line distance between the particle and the axis is r = 5.95 m. Part (a) Write an expression for the speed v of the particle. Part (b) What is the speed of the particle in m/s?arrow_forwardAn object with a mass of 17.7 kg is traveling around a circular path of radius 4.91 m. At a certain moment the object is known to have a centipetal acceleration of 5.42 m/s^2 and a tangential acceleration of 3.85 m/s^2. What is the objects speed at this moment?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY