bartleby

Videos

Textbook Question
Book Icon
Chapter 6, Problem 78GP

The gravitational force at different places on Earth due to the Sun and the Moon depends on each point’s distance from the Sun or Moon, and this variation is what causes the tides. Use the values inside the front cover of this book for the Earth–Moon distance REM, the Earth–Sun distance RES, the Moon’s mass MM, the Sun’s mass, MS, and the Earth’s radius RE. (a) First consider two small pieces of the Earth, each of mass m, one on the side of the Earth nearest the Moon, the other on the side farthest from the Moon. Show that the ratio of the Moon’s gravitational forces on these two masses is

( F near F far ) M = 1.0687.

(b) Next consider two small pieces of the Earth, each of mass m, one on the nearest point of Earth to the Sun, the other at the farthest point from the Sun. Show that the ratio of the Sun’s gravitational forces on these two masses is

( F near F far ) S = 1.000171.

(c) Show that the ratio of the Sun’s average gravitational force on the Earth compared to that of the Moon’s is

( F S F M ) avg = 178.

Note that the Moon’s smaller force varies much more across the Earth’s diameter than the Sun’s larger force. (d) Estimate the resulting “force difference” (the cause of the tides)

Δ F = F near F far = F far ( F near F far 1 ) F avg ( F near F far 1 )

for the Moon and for the Sun. Show that the ratio of the tide-causing force differences due to the Moon compared to the Sun is

Δ F M Δ F S 2.3.

Thus the Moon’s influence on tide production is over two times as great as the Sun’s.

Blurred answer
Students have asked these similar questions
Critical damping is the case where the mass never actually crosses over equilibrium position, but reaches equilibrium as fast as possible.  Experiment with changing c to find the critical damping constant.  Use the same initial conditions as in the last problem.  Zoom in a bit to make sure you don't allow any oscillations to take place - even small ones.
NASA's KC-135 Reduced Gravity Research aircraft, affectionately known as the "Vomit Comet," is used in training astronauts and testing equipment for microgravity environments. During a typical mission, the aircraft makes approximately 30 to 40 parabolic arcs. During each arc, the aircraft and objects inside it are in free-fall, and passengers float freely in apparent "weightlessness." The figure below shows the altitude of the aircraft during a typical mission. It climbs from 24,000 ft to 30,850 ft, where it begins a parabolic arc with a velocity of 155 m/s at 45.0° nose-high and exits with velocity 155 m/s at 45.0° nose-low. 31 000 45° nose high 45° nose low 24 000 Zero g 65 Maneuver time (s) (a) What is the aircraft's speed (in m/s) at the top of the parabolic arc? 110.0 m/s (b) What is the aircraft's altitude (in ft) at the top of the parabolic arc? 2.04e+04 What is the initial height at the start of the parabolic arc? What is the initial velocity at this point? What is the final…
12. What could we conclude if a system has a phase trajectory that sweeps out larger and larger area as time goes by?

Chapter 6 Solutions

Modified Mastering Physics without Pearson eText-- Instant Access -- for Physics for Scientists & Engineers with Modern Physics

Ch. 6 - If it were possible to drill a hole all the way...Ch. 6 - A satellite in a geosynchronous orbit stays over...Ch. 6 - Which pulls harder gravitationally, the Earth on...Ch. 6 - Would it require less speed to launch a satellite...Ch. 6 - An antenna loosens and becomes detached from a...Ch. 6 - Describe how careful measurements of the variation...Ch. 6 - The Sun is below us at midnight, nearly in line...Ch. 6 - When will your apparent weight be the greatest, as...Ch. 6 - If the Earths mass were double what it actually...Ch. 6 - The source of the Mississippi River is closer to...Ch. 6 - People sometimes ask. What keeps a satellite up in...Ch. 6 - Explain how a runner experiences free fall or...Ch. 6 - If you were in a satellite orbiting the Earth, how...Ch. 6 - Is the centripetal acceleration of Mars in its...Ch. 6 - The mass of the planet Pluto was not known until...Ch. 6 - The Earth moves faster in its orbit around the Sun...Ch. 6 - Keplers laws tell us that a planet moves faster...Ch. 6 - Does your body directly sense a gravitational...Ch. 6 - Discuss the conceptual differences between g as...Ch. 6 - Prob. 1MCQCh. 6 - Prob. 2MCQCh. 6 - Prob. 3MCQCh. 6 - Prob. 4MCQCh. 6 - Prob. 5MCQCh. 6 - Prob. 7MCQCh. 6 - Prob. 9MCQCh. 6 - Prob. 11MCQCh. 6 - Prob. 12MCQCh. 6 - Prob. 1PCh. 6 - Prob. 2PCh. 6 - (I) Calculate the acceleration due to gravity on...Ch. 6 - Prob. 4PCh. 6 - Prob. 5PCh. 6 - Prob. 6PCh. 6 - Prob. 7PCh. 6 - Prob. 8PCh. 6 - Prob. 9PCh. 6 - Prob. 10PCh. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - (II) Suppose the mass of the Earth were doubled,...Ch. 6 - (II) Determine the mass of the Sun using the known...Ch. 6 - (II) Estimate the acceleration due to gravity at...Ch. 6 - Prob. 16PCh. 6 - Prob. 17PCh. 6 - Prob. 18PCh. 6 - Prob. 19PCh. 6 - Prob. 20PCh. 6 - Prob. 21PCh. 6 - Prob. 22PCh. 6 - (II) Two identical point masses, each of mass M,...Ch. 6 - Prob. 24PCh. 6 - (III) (a) Use the binomial expansion...Ch. 6 - Prob. 26PCh. 6 - Prob. 27PCh. 6 - Prob. 28PCh. 6 - Prob. 29PCh. 6 - Prob. 30PCh. 6 - Prob. 31PCh. 6 - Prob. 32PCh. 6 - Prob. 33PCh. 6 - Prob. 34PCh. 6 - Prob. 35PCh. 6 - Prob. 36PCh. 6 - Prob. 37PCh. 6 - Prob. 38PCh. 6 - Prob. 39PCh. 6 - Prob. 40PCh. 6 - Prob. 41PCh. 6 - Prob. 42PCh. 6 - Prob. 43PCh. 6 - Prob. 44PCh. 6 - (I) Neptune is an average distance of 4.5109 km...Ch. 6 - Prob. 46PCh. 6 - (I) Use Keplers laws and the period of the Moon...Ch. 6 - (I) Determine the mass of the Earth from the known...Ch. 6 - (II) Table 63 gives the mean distance, period, and...Ch. 6 - (II) Determine the mean distance from Jupiter for...Ch. 6 - Prob. 51PCh. 6 - Prob. 52PCh. 6 - Prob. 53PCh. 6 - (II) The asteroid belt between Mars and Jupiter...Ch. 6 - Prob. 55PCh. 6 - (III) The orbital periods and mean orbital...Ch. 6 - (III) The comet Hale-Bopp has a period of 2400...Ch. 6 - Prob. 59PCh. 6 - (II) (a) What is the gravitational field at the...Ch. 6 - Prob. 61PCh. 6 - Prob. 62GPCh. 6 - Prob. 63GPCh. 6 - How far above the Earths surface will the...Ch. 6 - Prob. 65GPCh. 6 - Show that the rate of change of your weight is...Ch. 6 - Prob. 67GPCh. 6 - Prob. 68GPCh. 6 - Prob. 69GPCh. 6 - Prob. 70GPCh. 6 - Prob. 71GPCh. 6 - Prob. 72GPCh. 6 - Prob. 74GPCh. 6 - Newton had the data listed in Table 64, plus the...Ch. 6 - Prob. 76GPCh. 6 - Prob. 77GPCh. 6 - The gravitational force at different places on...Ch. 6 - Prob. 79GPCh. 6 - A plumb bob (a mass m hanging on a string) is...Ch. 6 - A science-fiction tale describes an artificial...Ch. 6 - Prob. 82GPCh. 6 - Suppose all the mass of the Earth were compacted...Ch. 6 - Prob. 84GPCh. 6 - Between the orbits of Mars and Jupiter, several...Ch. 6 - Prob. 86GP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY