Two blocks collide on a frictionless surface. After the collision, the blocks stick together. Block A has a mass M and is initially moving to the right at speed v . Block B has a mass 2 M and is initially at rest. System C is composed of both blocks, (a) Draw a force diagram for each block at an instant during the collision, (b) Rank the magnitudes of the horizontal forces in your diagram. Explain your reasoning, (c) Calculate the change in momentum of block A, block B, and system C. (d) Is kinetic energy conserved in this collision? Explain your answer. (This problem is courtesy of Edward F. Redish. For more such problems, visit http://www.physics.umd.edu/perg.)
Two blocks collide on a frictionless surface. After the collision, the blocks stick together. Block A has a mass M and is initially moving to the right at speed v . Block B has a mass 2 M and is initially at rest. System C is composed of both blocks, (a) Draw a force diagram for each block at an instant during the collision, (b) Rank the magnitudes of the horizontal forces in your diagram. Explain your reasoning, (c) Calculate the change in momentum of block A, block B, and system C. (d) Is kinetic energy conserved in this collision? Explain your answer. (This problem is courtesy of Edward F. Redish. For more such problems, visit http://www.physics.umd.edu/perg.)
Solution Summary: The author illustrates the force diagram for each block at an instant during the collision.
Two blocks collide on a frictionless surface. After the collision, the blocks stick together. Block A has a mass M and is initially moving to the right at speed v. Block B has a mass 2M and is initially at rest. System C is composed of both blocks, (a) Draw a force diagram for each block at an instant during the collision, (b) Rank the magnitudes of the horizontal forces in your diagram. Explain your reasoning, (c) Calculate the change in momentum of block A, block B, and system C. (d) Is kinetic energy conserved in this collision? Explain your answer. (This problem is courtesy of Edward F. Redish. For more such problems, visit http://www.physics.umd.edu/perg.)
ROTATIONAL DYNAMICS
Question 01
A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling
together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure
rolling motion Question 02
A sphere and cylinder of the same mass and radius start from ret at the same point and more
down the same plane inclined at 30° to the horizontal
Which body gets the bottom first and what is its acceleration
b) What angle of inclination of the plane is needed to give the slower body the same
acceleration
Question 03
i)
Define the angular velocity of a rotating body and give its SI unit
A car wheel has its angular velocity changing from 2rads to 30 rads
seconds. If the radius of the wheel is 400mm. calculate
ii)
The angular acceleration
iii)
The tangential linear acceleration of a point on the rim of the wheel
Question 04
in 20
Question B3
Consider the following FLRW spacetime:
t2
ds² = -dt² +
(dx²
+ dy²+ dz²),
t2
where t is a constant.
a)
State whether this universe is spatially open, closed or flat.
[2 marks]
b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function
of time t, starting at t = 0.
[3 marks]
c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy
B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect
to galaxy A.
d) The Friedmann equations are
2
k
8πG
а
4πG
+
a²
(p+3p).
3
a
3
[5 marks]
Use these equations to determine the energy density p(t) and the pressure p(t) for the
FLRW spacetime specified at the top of the page.
[5 marks]
e) Given the result of question B3.d, state whether the FLRW universe in question is (i)
radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv)
none of the previous. Justify your answer.
f)
[5 marks]
A conformally…
SECTION B
Answer ONLY TWO questions in Section B
[Expect to use one single-sided A4 page for each Section-B sub question.]
Question B1
Consider the line element
where w is a constant.
ds²=-dt²+e2wt dx²,
a) Determine the components of the metric and of the inverse metric.
[2 marks]
b) Determine the Christoffel symbols. [See the Appendix of this document.]
[10 marks]
c)
Write down the geodesic equations.
[5 marks]
d) Show that e2wt it is a constant of geodesic motion.
[4 marks]
e)
Solve the geodesic equations for null geodesics.
[4 marks]
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.