Physics for Scientists and Engineers, Vol. 1
Physics for Scientists and Engineers, Vol. 1
6th Edition
ISBN: 9781429201322
Author: Paul A. Tipler, Gene Mosca
Publisher: Macmillan Higher Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 6, Problem 73P

(a)

To determine

The x -component of the force as a function of x.

(a)

Expert Solution
Check Mark

Explanation of Solution

Given:

The mass of the block is m . The vertical distance of the top of the block and the ceiling is y0 and the horizontal displacement is x . Spring constant is k .

Formula used:

Write the expression for the force exerted by a spring to a particle.

  F=kx

Here, F is the force applied, k is spring constant and x is the displacement of the particle at any instant of time.

Calculation:

Write the expression for the force exerted on the block by the spring.

  F=kz   ........ (1)

Here, z is the distance by which the spring is stretched.

Write the expression for z .

  z=ly0   ........ (2)

Here, l is the length of the spring.

Write the expression for l .

  l=(x2+y02)

Substitute (x2+y02) for l in expression (2).

  z=(x2+y02)y0

Substitute ((x2+y02)y0) for z in expression (1).

  F=k((x2+y02)y0)

Write the expression for the x component of the force.

  Fx=Fcosθ   ........ (3)

Substitute x(x2+y02) for cosθ in expression (3).

  Fx=Fx(x2+y02)   ........ (4)

Substitute k((x2+y02)y0) for F in expression (4).

  Fx=Fx(x2+y02)=k((x2+y02)y0)x(x2+y02)=kx(1y0(x2+y02))   ........(5)

Conclusion:

Thus, the x-component of the force is kx(1y0(x2+y02)).

(b)

To determine

Whether the x component of the force is proportional to x3 for sufficiently small values of |x| .

(b)

Expert Solution
Check Mark

Explanation of Solution

Calculation:

Rearrange the expression (5).

  Fx=kx(11(1+(xy0)2))=kx(1(1+(xy0)2)1/2)

Expand the above expression in Taylor’s series and approximate up to second-order term.

  Fxkx(1112(xy0)2)=kx(12x2y02)=kx32y02

Conclusion:

Thus, the x component of the force is proportional to x3 for sufficiently small values of |x| .

(c)

To determine

The speed of the block.

(c)

Expert Solution
Check Mark

Explanation of Solution

Given:

The block is released from rest at x=x0 , where |x|<<y0 .

Formula Used:

Write the expression for the relation between final velocity, initial velocity, acceleration and the displacement of a particle.

  v2=u2+2aS

Here, v is the final velocity, u is the initial velocity, a is the acceleration and S is the displacement of the particle.

Calculation:

Write the expression for the acceleration of the particle.

  a=Fxm

Substitute kx32y02 for Fx in the above expression.

  a=kx32my02

Write the expression for the velocity of the particle when it crosses x=0 starting from x=x0 at rest.

  v=2ax0

Substitute kx032my02 for a in the above expression.

  v=kx04my02

Conclusion:

Thus, the speed of the block is kx04my02 .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Fresnel lens: You would like to design a 25 mm diameter blazed Fresnel zone plate with a first-order power of +1.5 diopters. What is the lithography requirement (resolution required) for making this lens that is designed for 550 nm? Express your answer in units of μm to one decimal point. Fresnel lens: What would the power of the first diffracted order of this lens be at wavelength of 400 nm? Express your answer in diopters to one decimal point. Eye: A person with myopic eyes has a far point of 15 cm. What power contact lenses does she need to correct her version to a standard far point at infinity? Give your answer in diopter to one decimal point.
Paraxial design of a field flattener. Imagine your optical system has Petzal curvature of the field with radius p. In Module 1 of Course 1, a homework problem asked you to derive the paraxial focus shift along the axis when a slab of glass was inserted in a converging cone of rays. Find or re-derive that result, then use it to calculate the paraxial radius of curvature of a field flattener of refractive index n that will correct the observed Petzval. Assume that the side of the flattener facing the image plane is plano. What is the required radius of the plano-convex field flattener? (p written as rho )
3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \).  (b) Repeat part (a) for 13 electrons.   Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Work and Energy - Physics 101 / AP Physics 1 Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=rKwK06stPS8;License: Standard YouTube License, CC-BY