Get Ready for Organic Chemistry
Get Ready for Organic Chemistry
2nd Edition
ISBN: 9780321774125
Author: KARTY, Joel
Publisher: PEARSON
Question
Book Icon
Chapter 6, Problem 6.9P
Interpretation Introduction

(a)

Interpretation:

It is to be determined whether the given solvent is suitable for a reaction involving HCC:Θ as a reactant with respect to leveling effect.

Concept introduction:

Leveling effects refers to the effect of a solvent on the behavior of acids and bases. If the reactant is a very strong acid or base, it can react with the solvent in an undesired proton transfer reaction. At equilibrium, the strongest acid that can occur in solution is the protonated solvent, and the strongest base that can occur in solution is the deprotonated solvent. For the leveling effect, a solvent is unsuitable for a particular reactant if the reactant (lower pKa) is stronger than the solvent’s conjugate acid and if the reactant is a stronger base (higher pKa) than the solvent’s conjugate base.

Expert Solution
Check Mark

Answer to Problem 6.9P

With respect to the leveling effect, water is not a suitable solvent for a reaction involving HCC:Θ as a reactant.

Explanation of Solution

The reaction of HCC:Θ with water is shown below:

Get Ready for Organic Chemistry, Chapter 6, Problem 6.9P , additional homework tip  1

Water, H2O (pKa = 15.7), is a stronger acid than acetylene, HCCH (pKa = 25). The product side of the reaction is most favored because the stronger acid, H2O, is on the reactant side. HCC:Θ does not change the properties of the water. Therefore, water, H2O, is not a suitable solvent for HCC:Θ because the equilibrium lies to the product side.

Conclusion

The solvent effect on the reactant is determined with respect to the leveling effect.

Interpretation Introduction

(b)

Interpretation:

It is to be determined whether the given solvent is suitable for a reaction involving HCC:Θ as a reactant with respect to leveling effect.

Concept introduction:

Leveling effects refers to the effect of a solvent on the behavior of acids and bases. If the reactant is a very strong acid or base, it can react with the solvent in an undesired proton transfer reaction. At equilibrium, the strongest acid that can occur in solution is the protonated solvent, and the strongest base that can occur in solution is the deprotonated solvent. For the leveling effect, a solvent is unsuitable for a particular reactant if the reactant (lower pKa) is stronger than the solvent’s conjugate acid and if the reactant is a stronger base (higher pKa) than the solvent’s conjugate base.

Expert Solution
Check Mark

Answer to Problem 6.9P

With respect to the leveling effect, ethanol is not a suitable solvent for a reaction involving HCC:Θ as a reactant.

Explanation of Solution

The reaction of HCC:Θ with water is shown below:

Get Ready for Organic Chemistry, Chapter 6, Problem 6.9P , additional homework tip  2

Ethanol, CH3CH2OH (pKa = 16), is a stronger acid than acetylene, HCCH (pKa = 25). The product side of the reaction is most favored because the stronger acid, CH3CH2OH, is on the reactant side. HCC:Θ does not change the properties of ethanol. Therefore, ethanol, CH3CH2OH, is not a suitable solvent for HCC:Θ because the equilibrium lies to the product side.

Conclusion

The solvent effect on the reactant is determined with respect to the leveling effect.

Interpretation Introduction

(c)

Interpretation:

It is to be determined whether the given solvent is suitable for a reaction involving HCC:Θ as a reactant with respect to leveling effect.

Concept introduction:

Leveling effects refers to the effect of a solvent on the behavior of acids and bases. If the reactant is a very strong acid or base, it can react with the solvent in an undesired proton transfer reaction. At equilibrium, the strongest acid that can occur in solution is the protonated solvent, and the strongest base that can occur in solution is the deprotonated solvent. For the leveling effect, a solvent is unsuitable for a particular reactant if the reactant (lower pKa) is stronger than the solvent’s conjugate acid and if the reactant is a stronger base (higher pKa) than the solvent’s conjugate base.

Expert Solution
Check Mark

Answer to Problem 6.9P

With respect to the leveling effect, ethanamide is not a suitable solvent for a reaction involving HCC:Θ as a reactant.

Explanation of Solution

The reaction of HCC:Θ with water is shown below:

Get Ready for Organic Chemistry, Chapter 6, Problem 6.9P , additional homework tip  3

Ethanamide, CH3CONH2 (pKa = 17), is a stronger acid than acetylene, HCCH (pKa = 25). The product side of the reaction is most favored because the stronger acid, CH3CONH2, is on the reactant side. HCC:Θ does not change the properties of ethanamide. Therefore, Ethanamide (CH3CONH2) is not a suitable solvent for HCC:Θ because the equilibrium lies to the product side.

Conclusion

The solvent effect on the reactant is determined with respect to the leveling effect.

Interpretation Introduction

(d)

Interpretation:

It is to be determined whether the given solvent is suitable for a reaction involving HCC:Θ as a reactant with respect to leveling effect.

Concept introduction:

Leveling effects refers to the effect of a solvent on the behavior of acids and bases. If the reactant is a very strong acid or base, it can react with the solvent in an undesired proton transfer reaction. At equilibrium, the strongest acid that can occur in solution is the protonated solvent, and the strongest base that can occur in solution is the deprotonated solvent. For the leveling effect, a solvent is unsuitable for a particular reactant if the reactant (lower pKa) is stronger than the solvent’s conjugate acid and if the reactant is a stronger base (higher pKa) than the solvent’s conjugate base.

Expert Solution
Check Mark

Answer to Problem 6.9P

With respect to the leveling effect, CH3SOCH3 is a suitable solvent for a reaction involving HCC:Θ as a reactant.

Explanation of Solution

The reaction of HCC:Θ with water is shown below:

Get Ready for Organic Chemistry, Chapter 6, Problem 6.9P , additional homework tip  4

Acetylene, HCCH (pKa = 25) is a stronger acid than dimethyl sulfoxide (CH3SOCH3) (pKa = 35). The reactant side of the reaction is most favored because the stronger acid, HCCH, is on the product side. HCC:Θ changes the properties of dimethyl sulfoxide. Therefore, dimethyl sulfoxide, CH3SOCH3, is a suitable solvent for HCC:Θ because the equilibrium lies to the reactant side.

Conclusion

The solvent effect on the reactant is determined with respect to the leveling effect.

Interpretation Introduction

(e)

Interpretation:

It is to be determined whether the given solvent is suitable for a reaction involving HCC:Θ as a reactant with respect to leveling effect.

Concept introduction:

Leveling effects refers to the effect of a solvent on the behavior of acids and bases. If the reactant is a very strong acid or base, it can react with the solvent in an undesired proton transfer reaction. At equilibrium, the strongest acid that can occur in solution is the protonated solvent, and the strongest base that can occur in solution is the deprotonated solvent. For the leveling effect, a solvent is unsuitable for a particular reactant if the reactant (lower pKa) is stronger than the solvent’s conjugate acid and if the reactant is a stronger base (higher pKa) than the solvent’s conjugate base.

Expert Solution
Check Mark

Answer to Problem 6.9P

With respect to the leveling effect, CH3CH2OCH2CH3 is a suitable solvent for a reaction involving HCC:Θ as a reactant.

Explanation of Solution

The reaction of HCC:Θ with water is shown below:

Get Ready for Organic Chemistry, Chapter 6, Problem 6.9P , additional homework tip  5

Acetylene, HCCH (pKa = 25), is a stronger acid than diethyl ether (CH3CH2OCH2CH3) (pKa = 45). The reactant side of the reaction is most favored because the stronger acid, HCCH, is on the product side. HCC:Θ changes the properties of diethyl ether. Therefore, diethyl ether, CH3CH2OCH2CH3, is a suitable solvent for HCC:Θ because the equilibrium lies to the reactant side.

Conclusion

The solvent effect on the reactant is determined with respect to the leveling effect.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Part VII. The H-NMR of a compound with molecular formula C5 H 10 O2 is given below. Find the following: (a) The no. of protons corresponding to each signal in the spectra (6) Give the structure of the compound and assign the signals to each proton in the compound. a 70.2 Integration Values C5H10O2 b 47.7 C 46.5 d 69.5 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 Chemical Shift (ppm) 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8
Part 111. 1 H-NMR spectrum of a compound with integration values in red is given below. Answer the following: (a) write the signals in the 'H-NMR spectrum to the corresponding protons on the structure of the molecule below. (b) Identify the theoretical multiplicities for each proton in the compound. Also give the possible. complex splitting patterns assuming J values are not similar. там Br 22 2 3 6 4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0 Chemical Shift (ppm) ra. Br 2 3 6 6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 Chemical Shift (ppm) 2 2 Br 7.3 7.2 7.1 7.0 6.9 6.7 6.6 6.5 6.4 6.3 6.2 6.1 6.0 Chemical Shift (ppm) 5.9 5.8 5.7 5.5 5.4 5.3 5.2 5.0 4.9
1600° 1538°C 1493°C In the diagram, the letter L indicates that it is a liquid. Indicate its components in the upper region where only L is indicated. The iron-iron carbide phase diagram. Temperature (°C) 1400 8 1394°C y+L 1200 2.14 y, Austenite 10000 912°C 800a 0.76 0.022 600 400 (Fe) a, Ferrite Composition (at% C) 15 1147°C a + Fe3C 2 3 Composition (wt% C) L 2500 4.30 2000 y + Fe3C 727°C 1500 Cementite (Fe3C) 1000 4 5 6 6.70 Temperature (°F)

Chapter 6 Solutions

Get Ready for Organic Chemistry

Ch. 6 - Prob. 6.11PCh. 6 - Prob. 6.12PCh. 6 - Prob. 6.13PCh. 6 - Prob. 6.14PCh. 6 - Prob. 6.15PCh. 6 - Prob. 6.16PCh. 6 - Prob. 6.17PCh. 6 - Prob. 6.18PCh. 6 - Prob. 6.19PCh. 6 - Prob. 6.20PCh. 6 - Prob. 6.21PCh. 6 - Prob. 6.22PCh. 6 - Prob. 6.23PCh. 6 - Prob. 6.24PCh. 6 - Prob. 6.25PCh. 6 - Prob. 6.26PCh. 6 - Prob. 6.27PCh. 6 - Prob. 6.28PCh. 6 - Prob. 6.29PCh. 6 - Prob. 6.30PCh. 6 - Prob. 6.31PCh. 6 - Prob. 6.32PCh. 6 - Prob. 6.33PCh. 6 - Prob. 6.34PCh. 6 - Prob. 6.35PCh. 6 - Prob. 6.36PCh. 6 - Prob. 6.37PCh. 6 - Prob. 6.38PCh. 6 - Prob. 6.39PCh. 6 - Prob. 6.40PCh. 6 - Prob. 6.41PCh. 6 - Prob. 6.42PCh. 6 - Prob. 6.43PCh. 6 - Prob. 6.44PCh. 6 - Prob. 6.45PCh. 6 - Prob. 6.46PCh. 6 - Prob. 6.47PCh. 6 - Prob. 6.48PCh. 6 - Prob. 6.49PCh. 6 - Prob. 6.50PCh. 6 - Prob. 6.51PCh. 6 - Prob. 6.52PCh. 6 - Prob. 6.53PCh. 6 - Prob. 6.54PCh. 6 - Prob. 6.55PCh. 6 - Prob. 6.56PCh. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - Prob. 6.59PCh. 6 - Prob. 6.60PCh. 6 - Prob. 6.61PCh. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - Prob. 6.66PCh. 6 - Prob. 6.67PCh. 6 - Prob. 6.68PCh. 6 - Prob. 6.69PCh. 6 - Prob. 6.70PCh. 6 - Prob. 6.71PCh. 6 - Prob. 6.72PCh. 6 - Prob. 6.73PCh. 6 - Prob. 6.74PCh. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Prob. 6.77PCh. 6 - Prob. 6.78PCh. 6 - Prob. 6.79PCh. 6 - Prob. 6.80PCh. 6 - Prob. 6.81PCh. 6 - Prob. 6.82PCh. 6 - Prob. 6.83PCh. 6 - Prob. 6.84PCh. 6 - Prob. 6.85PCh. 6 - Prob. 6.86PCh. 6 - Prob. 6.87PCh. 6 - Prob. 6.88PCh. 6 - Prob. 6.1YTCh. 6 - Prob. 6.2YTCh. 6 - Prob. 6.3YTCh. 6 - Prob. 6.4YTCh. 6 - Prob. 6.5YTCh. 6 - Prob. 6.6YTCh. 6 - Prob. 6.7YTCh. 6 - Prob. 6.8YTCh. 6 - Prob. 6.9YTCh. 6 - Prob. 6.10YTCh. 6 - Prob. 6.11YTCh. 6 - Prob. 6.12YTCh. 6 - Prob. 6.13YTCh. 6 - Prob. 6.14YTCh. 6 - Prob. 6.15YTCh. 6 - Prob. 6.16YTCh. 6 - Prob. 6.17YTCh. 6 - Prob. 6.18YTCh. 6 - Prob. 6.19YTCh. 6 - Prob. 6.20YT
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Organic Chemistry
Chemistry
ISBN:9781305580350
Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. Foote
Publisher:Cengage Learning
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning