EBK MANUFACTURING PROCESSES FOR ENGINEE
6th Edition
ISBN: 9780134425115
Author: Schmid
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 6.99P
To determine
The force required for forging.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. A component is designed to be hot forged in an impression die. The projected area of the product is 5800 mm2. During the forging process flashing is formed so that the area including the flash will be 8900 mm2. The part geometry is considered to be simple and the heated work material yields at 92 MPa. Calculate the maximum force required to perform the operation.
2. What are the advantages and disadvantages to forge a product through the open forging process, rather than to machine it from the same material?
Calculate (1) die pressure distribution and (2) forging
force for plane strain forging (open die forging).
Assume yield strength of the material is Y, and yielding
criterion is von Mises.
ho
2Lo
h
Forged to
2L
xdx
L
'x+value
Note: Assume Zo Constant Plane strain
Die pressure distribution
h
L
L
Die pressure distribution
h
MATERIAL
L
dx
-(-1)
Friction Hill
Y
L
When 0;
=Y
P=Y' =
Calculate forging force
X
L
dF elemental
volume
Average pressure
A 10 mm thick plate is rolled to 7 mm thick in a rolling mill using 1000 mm diameter rigid rolls. The neutral point is located at an angle of 0.3 times the bite angle from the exit. What will be the thickness of the plate at the neutral point.
Chapter 6 Solutions
EBK MANUFACTURING PROCESSES FOR ENGINEE
Ch. 6 - Prob. 6.1QCh. 6 - Prob. 6.2QCh. 6 - Prob. 6.3QCh. 6 - Prob. 6.4QCh. 6 - Prob. 6.5QCh. 6 - Prob. 6.6QCh. 6 - Prob. 6.7QCh. 6 - Prob. 6.8QCh. 6 - Prob. 6.9QCh. 6 - Prob. 6.10Q
Ch. 6 - Prob. 6.11QCh. 6 - Prob. 6.12QCh. 6 - Prob. 6.13QCh. 6 - Prob. 6.14QCh. 6 - Prob. 6.15QCh. 6 - Prob. 6.16QCh. 6 - Prob. 6.17QCh. 6 - Prob. 6.18QCh. 6 - Prob. 6.19QCh. 6 - Prob. 6.20QCh. 6 - Prob. 6.21QCh. 6 - Prob. 6.22QCh. 6 - Prob. 6.23QCh. 6 - Prob. 6.24QCh. 6 - Prob. 6.25QCh. 6 - Prob. 6.26QCh. 6 - Prob. 6.27QCh. 6 - Prob. 6.28QCh. 6 - Prob. 6.29QCh. 6 - Prob. 6.30QCh. 6 - Prob. 6.31QCh. 6 - Prob. 6.32QCh. 6 - Prob. 6.33QCh. 6 - Prob. 6.34QCh. 6 - Prob. 6.35QCh. 6 - Prob. 6.36QCh. 6 - Prob. 6.37QCh. 6 - Prob. 6.38QCh. 6 - Prob. 6.39QCh. 6 - Prob. 6.40QCh. 6 - Prob. 6.41QCh. 6 - Prob. 6.42QCh. 6 - Prob. 6.43QCh. 6 - Prob. 6.44QCh. 6 - Prob. 6.45QCh. 6 - Prob. 6.46QCh. 6 - Prob. 6.47QCh. 6 - Prob. 6.48QCh. 6 - Prob. 6.49QCh. 6 - Prob. 6.50QCh. 6 - Prob. 6.51QCh. 6 - Prob. 6.52QCh. 6 - Prob. 6.53QCh. 6 - Prob. 6.54QCh. 6 - Prob. 6.55QCh. 6 - Prob. 6.56QCh. 6 - Prob. 6.57QCh. 6 - Prob. 6.58QCh. 6 - Prob. 6.59QCh. 6 - Prob. 6.60QCh. 6 - Prob. 6.61QCh. 6 - Prob. 6.62QCh. 6 - Prob. 6.63QCh. 6 - Prob. 6.64QCh. 6 - Prob. 6.65QCh. 6 - Prob. 6.66QCh. 6 - Prob. 6.67QCh. 6 - Prob. 6.68QCh. 6 - Prob. 6.69QCh. 6 - Prob. 6.70QCh. 6 - Prob. 6.71QCh. 6 - Prob. 6.72QCh. 6 - Prob. 6.73PCh. 6 - Prob. 6.74PCh. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Prob. 6.77PCh. 6 - Prob. 6.78PCh. 6 - Prob. 6.79PCh. 6 - Prob. 6.80PCh. 6 - Prob. 6.81PCh. 6 - Prob. 6.82PCh. 6 - Prob. 6.83PCh. 6 - Prob. 6.84PCh. 6 - Prob. 6.85PCh. 6 - Prob. 6.86PCh. 6 - Prob. 6.87PCh. 6 - Prob. 6.88PCh. 6 - Prob. 6.89PCh. 6 - Prob. 6.90PCh. 6 - Prob. 6.91PCh. 6 - Prob. 6.92PCh. 6 - Prob. 6.93PCh. 6 - Prob. 6.94PCh. 6 - Prob. 6.95PCh. 6 - Prob. 6.96PCh. 6 - Prob. 6.97PCh. 6 - Prob. 6.98PCh. 6 - Prob. 6.99PCh. 6 - Prob. 6.100PCh. 6 - Prob. 6.101PCh. 6 - Prob. 6.102PCh. 6 - Prob. 6.103PCh. 6 - Prob. 6.104PCh. 6 - Prob. 6.105PCh. 6 - Prob. 6.106PCh. 6 - Prob. 6.107PCh. 6 - Prob. 6.108PCh. 6 - Prob. 6.109PCh. 6 - Prob. 6.110PCh. 6 - Prob. 6.111PCh. 6 - Prob. 6.112PCh. 6 - Prob. 6.113PCh. 6 - Prob. 6.114PCh. 6 - Prob. 6.115PCh. 6 - Prob. 6.116PCh. 6 - Prob. 6.117PCh. 6 - Prob. 6.118PCh. 6 - Prob. 6.119PCh. 6 - Prob. 6.120PCh. 6 - Prob. 6.121PCh. 6 - Prob. 6.122PCh. 6 - Prob. 6.123PCh. 6 - Prob. 6.124PCh. 6 - Prob. 6.125PCh. 6 - Prob. 6.126PCh. 6 - Prob. 6.127PCh. 6 - Prob. 6.128PCh. 6 - Prob. 6.129PCh. 6 - Prob. 6.130PCh. 6 - Prob. 6.131PCh. 6 - Prob. 6.132PCh. 6 - Prob. 6.133PCh. 6 - Prob. 6.134PCh. 6 - Prob. 6.135PCh. 6 - Prob. 6.136PCh. 6 - Prob. 6.137PCh. 6 - Prob. 6.138PCh. 6 - Prob. 6.139PCh. 6 - Prob. 6.140PCh. 6 - Prob. 6.142DCh. 6 - Prob. 6.143DCh. 6 - Prob. 6.144DCh. 6 - Prob. 6.145DCh. 6 - Prob. 6.146DCh. 6 - Prob. 6.147DCh. 6 - Prob. 6.149D
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A cylindrical ingot with D0 = 50 mm and h0 = 40 mm is cold forged using an open die.The final height is 20 mm. The coefficient of form / friction between the die and the workpiece isconsider Kf = 1.10.The material from which the ingot is made has the following characteristics:K = 600 MPa and η = 0.12.Determine the force (F) on the operation:a) Force required at the moment of reaching the yield point (ℇ = 0.002)b) Force required when you have a height of h = 30 mmc) Force required when there is a final height of h = 20 mmd) Construct the graphs: Force vs Δh and effort vs Δharrow_forwardLow carbon steel plate that is 1.65 inches thick is to be rolled down to 1.3 inches in a single pass. The plate gets 4% wider as the thickness gets smaller. The steel plate has a 174 MPa yield strength and a 290 MPa tensile strength. The plate enters at a pace of 0.6 inches per minute. The rotating speed is 49.0 rev/min, and the roll radius is 12.8 inches. Calculate: a) Determine the minimum required coefficient of friction that would make this rolling operation possible b) exit velocity of the plate (m/min) c) forward slip (m/min) Please submit the final answers in 2 decimal placesarrow_forwardQuestion 7 A component is designed to be hot forged in an impression die. The projected area of the product is 5800 mm?. During the forging process flashing is formed so that the area including the flash will be 8900 mm?. The part geometry is considered to be simple and the heated work material yields at 92 MPa. Calculate the maximum force required to perform the operation. 7.1 7.2 What are the advantages and disadvantages to forge a product through the open forging process, rather than to machine it from the same material?arrow_forward
- A compound die will be used to blank and punch a large rectangle (90x150mm blank dimensions) out of 6061ST aluminum alloy sheet stock 3.5 mm thick. The diameter of inside hole is 25 mm. The aluminum sheet metal has a tensile strength 310 MPa. Determine the minimum tonnage press (force) to perform the blanking and punching operation (1) assume that blanking and punching occur simultaneously and (2) assume that punching occurs first, then blanking, Take: Ac-0.06arrow_forward2. A rectangular prism with dimension of height, ho, length, 2Lo, width, Zo is forged to a final dimension of height, h, length, 2L, width, Zo, by open die forging under plane-strain condition. If the coefficient of friction between the die and workpiece is µ (assume sliding friction in the die workpiece interface) and the yield strength of the material is Y, please prove (1) The die pressure at the end of stroke is: P= 2 √3 2μ Yeh -(L-x) where x is the distance from center of the workpiece. (2) If a rectangular specimen made of annealed Steel (σ = 25,000ε 0.25 psi) needs to be forged by the process above from 2L0 = 6 inch, ho = 4 inch, Zo =1 inch with flat dies to a height of h = 2 inch at room temperature. Assuming that the coefficient of friction is 0.2, calculate the average pressure and force required at the end of the stroke.arrow_forwardI need a step by step answer please :)arrow_forward
- Note** take Y value as Y=330MPaarrow_forwardA cylindrical billet of 60mm diameter is forged from 80mm height to 60mm at 1000 o C. The material has a constant flow stress of 80 MPa. Calculate the work done to deform. A 10kN drop hammer is used to complete the reduction in one blow. What will be the height of the fall?arrow_forward6.100 A 0.25-m-wide billet of 5052-O aluminum (K = 210 MPa, n = 0.13) is forged from a thickness of 30 mm to a thickness of 20 mm with a long die with a width of 75 mm. The coefficient of friction for the die/workpiece interface is 0.25. Calculate the maximum die pressure and required forging force.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License