EBK MANUFACTURING PROCESSES FOR ENGINEE
6th Edition
ISBN: 9780134425115
Author: Schmid
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 6.84P
To determine
The expression for
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2) Drawing: A round rod of annealed 302 stainless steel (K = 1300 MPa and n = 0.3) is being drawn
from a diameter of 15 mm to a diameter of 12 mm at a speed 0.25 m/s, using a semidie angle of 8º.
a. Calculate the percentage reduction, the applied force due to ideal deformation, friction, and
inhomogeneous deformation. Assume coefficient of friction of 0.1.
b. Calculate the required power, process efficiency, and the die pressure at the exit.
In a stamping operation, a 2 mm thick stainless steel sheet with an ultimate tensile strenght of 900 MPa is used. For a given blank size of 200 mm x 200 mm,
calculate the punching force required to make a sheet metal part with 20 circle holes, each 4 mm and 10 square holes each with an edge of 5 mm. (1)
Wire is drawn through a draw die with entrance angle a= 17°. Starting
diameter is 3.0 mm and final diameter = 2.4 mm. The coefficient of friction at
the work-die interface = 0.08. The metal has a strength coefficient K = 205
MPa and a strain-hardening exponent n =
draw force in this operation.
Why are multiple passes usually required to achieve the desired reduction?
(Hint: Observe the draw stress value found in this question)
0.20. Determine the draw stress and
Lubricant box
Initial wire stock (in coil form)
Multiple
pass/draft
drawing
Draw die
V2, F
V3, F
shown in
figure.
Capstan drum (holds multiple loops of wire)
(1)
(2)
(3)
Chapter 6 Solutions
EBK MANUFACTURING PROCESSES FOR ENGINEE
Ch. 6 - Prob. 6.1QCh. 6 - Prob. 6.2QCh. 6 - Prob. 6.3QCh. 6 - Prob. 6.4QCh. 6 - Prob. 6.5QCh. 6 - Prob. 6.6QCh. 6 - Prob. 6.7QCh. 6 - Prob. 6.8QCh. 6 - Prob. 6.9QCh. 6 - Prob. 6.10Q
Ch. 6 - Prob. 6.11QCh. 6 - Prob. 6.12QCh. 6 - Prob. 6.13QCh. 6 - Prob. 6.14QCh. 6 - Prob. 6.15QCh. 6 - Prob. 6.16QCh. 6 - Prob. 6.17QCh. 6 - Prob. 6.18QCh. 6 - Prob. 6.19QCh. 6 - Prob. 6.20QCh. 6 - Prob. 6.21QCh. 6 - Prob. 6.22QCh. 6 - Prob. 6.23QCh. 6 - Prob. 6.24QCh. 6 - Prob. 6.25QCh. 6 - Prob. 6.26QCh. 6 - Prob. 6.27QCh. 6 - Prob. 6.28QCh. 6 - Prob. 6.29QCh. 6 - Prob. 6.30QCh. 6 - Prob. 6.31QCh. 6 - Prob. 6.32QCh. 6 - Prob. 6.33QCh. 6 - Prob. 6.34QCh. 6 - Prob. 6.35QCh. 6 - Prob. 6.36QCh. 6 - Prob. 6.37QCh. 6 - Prob. 6.38QCh. 6 - Prob. 6.39QCh. 6 - Prob. 6.40QCh. 6 - Prob. 6.41QCh. 6 - Prob. 6.42QCh. 6 - Prob. 6.43QCh. 6 - Prob. 6.44QCh. 6 - Prob. 6.45QCh. 6 - Prob. 6.46QCh. 6 - Prob. 6.47QCh. 6 - Prob. 6.48QCh. 6 - Prob. 6.49QCh. 6 - Prob. 6.50QCh. 6 - Prob. 6.51QCh. 6 - Prob. 6.52QCh. 6 - Prob. 6.53QCh. 6 - Prob. 6.54QCh. 6 - Prob. 6.55QCh. 6 - Prob. 6.56QCh. 6 - Prob. 6.57QCh. 6 - Prob. 6.58QCh. 6 - Prob. 6.59QCh. 6 - Prob. 6.60QCh. 6 - Prob. 6.61QCh. 6 - Prob. 6.62QCh. 6 - Prob. 6.63QCh. 6 - Prob. 6.64QCh. 6 - Prob. 6.65QCh. 6 - Prob. 6.66QCh. 6 - Prob. 6.67QCh. 6 - Prob. 6.68QCh. 6 - Prob. 6.69QCh. 6 - Prob. 6.70QCh. 6 - Prob. 6.71QCh. 6 - Prob. 6.72QCh. 6 - Prob. 6.73PCh. 6 - Prob. 6.74PCh. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Prob. 6.77PCh. 6 - Prob. 6.78PCh. 6 - Prob. 6.79PCh. 6 - Prob. 6.80PCh. 6 - Prob. 6.81PCh. 6 - Prob. 6.82PCh. 6 - Prob. 6.83PCh. 6 - Prob. 6.84PCh. 6 - Prob. 6.85PCh. 6 - Prob. 6.86PCh. 6 - Prob. 6.87PCh. 6 - Prob. 6.88PCh. 6 - Prob. 6.89PCh. 6 - Prob. 6.90PCh. 6 - Prob. 6.91PCh. 6 - Prob. 6.92PCh. 6 - Prob. 6.93PCh. 6 - Prob. 6.94PCh. 6 - Prob. 6.95PCh. 6 - Prob. 6.96PCh. 6 - Prob. 6.97PCh. 6 - Prob. 6.98PCh. 6 - Prob. 6.99PCh. 6 - Prob. 6.100PCh. 6 - Prob. 6.101PCh. 6 - Prob. 6.102PCh. 6 - Prob. 6.103PCh. 6 - Prob. 6.104PCh. 6 - Prob. 6.105PCh. 6 - Prob. 6.106PCh. 6 - Prob. 6.107PCh. 6 - Prob. 6.108PCh. 6 - Prob. 6.109PCh. 6 - Prob. 6.110PCh. 6 - Prob. 6.111PCh. 6 - Prob. 6.112PCh. 6 - Prob. 6.113PCh. 6 - Prob. 6.114PCh. 6 - Prob. 6.115PCh. 6 - Prob. 6.116PCh. 6 - Prob. 6.117PCh. 6 - Prob. 6.118PCh. 6 - Prob. 6.119PCh. 6 - Prob. 6.120PCh. 6 - Prob. 6.121PCh. 6 - Prob. 6.122PCh. 6 - Prob. 6.123PCh. 6 - Prob. 6.124PCh. 6 - Prob. 6.125PCh. 6 - Prob. 6.126PCh. 6 - Prob. 6.127PCh. 6 - Prob. 6.128PCh. 6 - Prob. 6.129PCh. 6 - Prob. 6.130PCh. 6 - Prob. 6.131PCh. 6 - Prob. 6.132PCh. 6 - Prob. 6.133PCh. 6 - Prob. 6.134PCh. 6 - Prob. 6.135PCh. 6 - Prob. 6.136PCh. 6 - Prob. 6.137PCh. 6 - Prob. 6.138PCh. 6 - Prob. 6.139PCh. 6 - Prob. 6.140PCh. 6 - Prob. 6.142DCh. 6 - Prob. 6.143DCh. 6 - Prob. 6.144DCh. 6 - Prob. 6.145DCh. 6 - Prob. 6.146DCh. 6 - Prob. 6.147DCh. 6 - Prob. 6.149D
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A spool of copper wire has a starting diameter of 2.5 mm. It is drawn through a die with an opening that is 2.1 mm. The entrance angle of the die = 18°. Coefficient of friction at the work die interface is 0.08. The pure copper has a strength coefficient = 300 MPa and a strain hardening coefficient = 0.50. The operation is performed at room temperature. Determine (a) area reduction, (b) draw stress, and (c) draw force required for the operation.arrow_forwardA rectangufar workpiece has the following original dimensions: 2a = 120 mm, h = 40 mm and width = 25 mm (see Fig. 6.5). The metal has a strength coefficient of 530 MPa and a strain hardening exponent of 0.26. It is being forged in-plane strain with u = 0.25. Calculate the force required at a reduction of 25%. Use the average- Question 2 Not yet answered Marked out of 5 pressure formula. P Flag questionarrow_forwardA 42mm thick low carbon steel plate is reduced to 34mm in one rolling pass. At the same time that the thickness is reduced, the plate is widened by 4%. The elastic limit of the steel plate is 174MPa and its resistance is 290MPa. The input speed of the plate is 15m/min. The radius of the cylinder is 52.8mm and the rotation speed is 49 revolutions per minute. Determine: a) The minimum coefficient of friction that will make this rolling operation possible. b) The output speed of the plate c) Slide forwardarrow_forward
- The team performs a cold heading operation to produce the head on a steel nail. The strength coefficient for this steel is K = 550 MPa, and the strain hardening exponent n = 0.24. Coefficient of friction at the die- work interface = 0.10. The wire stock out of which the nail is made is 4.75 mm in diameter. The head is to have a diameter = 9.5 mm and a thickness = 1.5 mm. (a) What length of stock must project out of the die in order to provide sufficient volume of material for this upsetting operation? (b) Compute the maximum force that the punch must apply to form the head in this open-die operation. Discuss the result?arrow_forwardAssume you are bending a 3/16” thick rolled plate of Al 6061-T6 at a 90-degree angle. The initial bend radius (after the part is bent in the press brake) is 0.35”. Look up material properties on the Internet a) What is the final bend radius after the part has “relaxed”?b) Is it within the 2-4% rule of thumb?Show your work, and write down any values you choose to reference/use.arrow_forwardA compound die will be used to blank and punch a large rectangle (90x150mm blank dimensions) out of 6061ST aluminum alloy sheet stock 3.5 mm thick. The diameter of inside hole is 25 mm. The aluminum sheet metal has a tensile strength 310 MPa. Determine the minimum tonnage press (force) to perform the blanking and punching operation (1) assume that blanking and punching occur simultaneously and (2) assume that punching occurs first, then blanking, Take: Ac-0.06arrow_forward
- A cylindrical workpiece of 100mm diameter and 150mm in height (Fig. 1) is upset (open die forged) at 1200° C to 100mm height disk (Fig. 2). Material of the workpiece is low carbon steel. A graphite lubricant reduces the friction to u=0.25. A press with 2-m/sec speeds is used to make this part. At 1200° C the material has the values for its C=48MPA and m=0.08 parameters Fig. 1 Height=150mm, Diameter=100mm Fig. 2 Height = 100mm, Diamete = ? mm (a) (b) (c) Determine the final diameter of the disk (see Fig. 2) Determine the true strain rate at the end of process. Calculate the flow stress at the end of the stroke.arrow_forwardDo pleasearrow_forwardEstimate the power for annealed low carbon steel strip 200 mm wide and 10 mm thick, rolled to a thickness of 6 mm. The roll radius is 200 mm, and the roll rotates at 200 rev/min; use coefficient of friction at the die-work interface (p)=0.1. A low carbon steel such as AISI 1020 has K (strength coefficient) = 530 MPa and n ( strain hardening exponent) =0.26a)1059 kWb)950 kWc)1183 kWd)875 kWarrow_forward
- (c) A flat rolling operation is being carried out where the roll radius is 200 mm and the roll rotates at 100 rpm. The workpiece material is annealed low carbon steel with 200 mm wide and 10 mm thickness. The strength coefficient and the strain hardening of the carbon steel are 530 MPa and 0.26, respectively. The coefficient of friction is 0.2. (i) Caicurae tne roll force and torque if the workpiece is rolled to a thickness of 4 mm. (ii) Calculate the maximum possible draft and evaluate how friction effect the thickness of the rolled workpiece.arrow_forwardThe figure below shows a symmetric plane-strain upsetting process. The process may also be thought of as a form of side extrusion. Observations show that the deformation is confined to two shear planes, each one being analogous to that seen in plane-strain cutting. You may assume that there is no friction between the work material and the tool/die walls; the uniaxial yield strength of the material is σy and is independent of strain rate and temperature, and the material behaves as a rigid plastic solid. a) Calculate the pressure (p) required for the upsetting process in terms of σy. b) If friction existed at the die walls and the frictional work (energy) dissipation was 30% of the energy required for shape change alone (part (a) above), then what would be the pressure (p)?arrow_forwardEx: Wire is drawn through a draw die with entrance angle 15°. Starting diameter is 2.5 mm and final diameter 2.0 mm. The coefficient of friction at the work-die interface 0.07. The metal has a strength coefficient K=205 MPa and a strain- hardening exponent n = 0.20. Determine the draw stress and draw force in this operation.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Types of Manufacturing Process | Manufacturing Processes; Author: Magic Marks;https://www.youtube.com/watch?v=koULXptaBTs;License: Standard Youtube License