Born-Haber cycles for formation of MgF and MgF 2 from its elements should be drawn. Concept introduction: The pictorial representation of the formation of ionic solids from its constituent elements is known as the Born-Haber cycle. Following are the steps required to draw the Born-Haber cycle of any ionic compound: Step 1: Solid metal is converted into gaseous isolated atoms. It takes place by a process called sublimation. Step 2: Gaseous molecules are broken down into separate atoms. Energy is supplied to break molecules apart and this is called bond dissociation energy . Step 3: Isolated metal atoms are converted into respective cations with the help of ionization energy. Step 4: Anions are formed from gaseous atoms with the help of electron affinity . Step 5: Ionic compound is formed by the combination of cation and anion. Energy is released in this process.
Born-Haber cycles for formation of MgF and MgF 2 from its elements should be drawn. Concept introduction: The pictorial representation of the formation of ionic solids from its constituent elements is known as the Born-Haber cycle. Following are the steps required to draw the Born-Haber cycle of any ionic compound: Step 1: Solid metal is converted into gaseous isolated atoms. It takes place by a process called sublimation. Step 2: Gaseous molecules are broken down into separate atoms. Energy is supplied to break molecules apart and this is called bond dissociation energy . Step 3: Isolated metal atoms are converted into respective cations with the help of ionization energy. Step 4: Anions are formed from gaseous atoms with the help of electron affinity . Step 5: Ionic compound is formed by the combination of cation and anion. Energy is released in this process.
Solution Summary: The author explains the Born-Haber cycle for formation of ionic solids from its constituent elements.
Formula Formula Bond dissociation energy (BDE) is the energy required to break a bond, making it an endothermic process. BDE is calculated for a particular bond and therefore consists of fragments such as radicals since it undergoes homolytic bond cleavage. For the homolysis of a X-Y molecule, the energy of bond dissociation is calculated as the difference in the total enthalpy of formation for the reactants and products. X-Y → X + Y BDE = Δ H f X + Δ H f Y – Δ H f X-Y where, ΔHf is the heat of formation.
Chapter 6, Problem 6.93SP
Interpretation Introduction
Interpretation:
Born-Haber cycles for formation of MgF and MgF2 from its elements should be drawn.
Concept introduction:
The pictorial representation of the formation of ionic solids from its constituent elements is known as the Born-Haber cycle. Following are the steps required to draw the Born-Haber cycle of any ionic compound:
Step 1: Solid metal is converted into gaseous isolated atoms. It takes place by a process called sublimation.
Step 2: Gaseous molecules are broken down into separate atoms. Energy is supplied to break molecules apart and this is called bond dissociation energy.
Step 3: Isolated metal atoms are converted into respective cations with the help of ionization energy.
Step 4: Anions are formed from gaseous atoms with the help of electron affinity.
Step 5: Ionic compound is formed by the combination of cation and anion. Energy is released in this process.
43) 10.00 ml of vinegar (active ingredient is acetic acid) is titrated to the endpoint
using 19.32 ml of 0.250 M sodium hydroxide. What is the molarity of acetic acid
in the vinegar? YOU MUST SHOW YOUR WORK.
NOTE: MA x VA = MB x VB
424 Repon Sheet Rates of Chemical Reactions : Rate and Order of 1,0, Deception
B. Effect of Temperature
BATH TEMPERATURE
35'c
Yol of Oh
نام
Time
485
Buret rend
ing(n)
12
194
16.
6
18
20
10
22
24
14
115 95
14738
2158235
8:26 CMS
40148
Total volume of 0, collected
Barometric pressure 770-572
ml
mm Hg
Vapor pressure of water at bath temperature (see Appendix L) 42.2
Slope
Compared with the rate found for solution 1, there is
Using the ideal gas law, calculate the moles of O; collected
(show calculations)
times faster
10
Based on the moles of O, evolved, calculate the molar concentration of the original 3% 1,0, solution (sho
calculations)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell