(a)
Interpretation:
The MO diagram, the number of unpaired electrons, the number bonds in
Concept Introduction:
Molecular orbital theory:
The atomic orbitals of the atoms constituted in a molecule are combined to produce new orbitals are called Molecular Orbitals.
Like atomic orbitals, a molecular orbital can accommodate maximum two electrons and the two electrons must have opposite spins (Pauli Exclusion Principle).
The numbers of MO’s are equals to the number of atomic orbitals are combined in such a way that the linear combination of similar atomic orbitals to form one bonding and one anti-bonding MO’s.
The bonding MO’s are lower in energy than the anti-bonding MO’s.
HOMO is the highest energized occupied orbital in the MO’s.
Relative energy levels of molecules are according to the energy levels of atomic orbitals.
LUMO is the lowest energized orbital in the MO’s.
Bond order can be calculated using below formula
(a)
Explanation of Solution
The total number of valence electrons present in
The molecular orbital diagrams of the
The bond order can be calculated using bonding and anti-bonding orbitals, the bond order is
Therefore, the
(b)
Interpretation:
The MO diagram, the number of unpaired electrons, the number bonds in
Concept Introduction:
Refer part (a).
(b)
Explanation of Solution
The total number of valence electrons present in
The molecular orbital diagrams of the
The bond order can be calculated using bonding and anti-bonding orbitals, the bond order is
Therefore, the
(c)
Interpretation:
The MO diagram, the number of unpaired electrons, the number bonds in
Concept Introduction:
Refer part (a).
(c)
Explanation of Solution
The total number of valence electrons present in
The molecular orbital diagrams of the
The bond order can be calculated using bonding and anti-bonding orbitals, the bond order is
Therefore, the
Want to see more full solutions like this?
Chapter 6 Solutions
OWLV2 FOR MOORE/STANITSKI'S CHEMISTRY:
- In the kinetic theory of gases, explain the concept of the velocity distribution function of particles.arrow_forwardHi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION with its parts spread out till part (g), please answer EACH part till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all calculations step by step EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forwardHi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION, please answer EACH part PART A AND PART B!!!!! till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all details EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forward
- Hi!! Please provide a solution that is handwritten. this is an inorganic chemistry question please answer accordindly!! its just one question with parts JUST ONE QUESTION, please answer EACH part till the end and dont just provide wordy explanations wherever asked for structures, please DRAW DRAW them on a paper and post clearly!! answer the full question with all details EACH PART CLEARLY please thanks!! im reposting this please solve all parts and drawit not just word explanations!!arrow_forward8b. Explain, using key intermediates, why the above two products are formed instead of the 1,2-and 1,4- products shown in the reaction below. CIarrow_forward(5pts) Provide the complete arrow pushing mechanism for the chemical transformation depicted below Use proper curved arrow notation that explicitly illustrates all bonds being broken, and all bonds formed in the transformation. Also, be sure to include all lone pairs and formal charges on all atoms involved in the flow of electrons. CH3O H I I CH3O-H H I ① Harrow_forward
- 1. For each of the following, predict the products of the reaction by writing a balance net ionic equation for each. If no reaction is expected, then write NO REACTION. (a) AgNO3 (aq) is mixed with Na2CO3 (aq). (b) An aqueous solution of ammonium sulfate is added to an aqueous solution of calcium chloride. (c) RbI (aq) is added to Pb(NO3)2 (aq). (d) NaCl (s) is added to AgNO3 (aq).arrow_forward4. Determine the amount in grams of AgCl (s) formed when 2.580 g AgNO3(s) is added to 45.00 mL of a 0.1250 M CrCl3 (aq) (The other product is aqueous chromium (III) nitrate) 5. Determine the amount (in grams) of Cobalt (II) phosphate formed when an aqueous solution of 30.0 ml of 0.450 M Sodium Phosphate is mixed with 20.0 mL of 0.500 M aqueous solution of cobalt (II) nitrate. (The other product is aqueous sodium nitrate)arrow_forward7. Consider the following reaction that describes the dissolution of copper metal in nitric acid: Cu (s) + 4 HNO3 (aq) → Cu(NO3)2 (aq) + 2 H₂O (1) + 2 NO2 (g) How many mL of 3.50 M HNO3 (aq) are required to dissolve 20.00 g Cu?arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning