Fundamentals of Momentum, Heat and Mass Transfer
Fundamentals of Momentum, Heat and Mass Transfer
6th Edition
ISBN: 9781118804292
Author: WELTY
Publisher: DGTL BNCOM
bartleby

Concept explainers

Question
Book Icon
Chapter 6, Problem 6.7P
Interpretation Introduction

Interpretation: The volume rate of the flow of air in the duct and the horsepower output of the fan needs to be determined.

Concept introduction: The Energy balance across the fan is given by Bernoulli’s equation in which the sum of potential energy, kinetic energy and pressure energy is constant. The Bernoulli equation across 2 points of any system is given by:-

  P1ρ+v122+ gZ1=P2ρ+v222+ gZ2 ........ (1)

Here, P1 and P2 are pressures at 2 points of the system in Pascal.

v1 and v2 are velocities at 2 points of the system in m/s.

Z1 and Z2 are the locations of the inlet and outlet of the air.

  ρ=Densityofair=1.22kg/m3g=Accelerationduetogravity9.8m/s2

The volumetric flow rate in the air duct is given as,

  Q=A×v ........ (2)

Q = Volumetric flow rate of air

A = Area of duct

v = Velocity of air at the outlet

  P1-P2=ρwghHere,h=Reading of the differential manometer ρw=Densityofwater ........ (3)

The power output is given as,

  P˙=ρQv222P˙=Poweroutputv2=Outputvelocityofair ........ (4)

Blurred answer
Students have asked these similar questions
The power out of an adiabatic steam turbine is 5 MW and the steam enters turbine at 2 MPa and velocity of 50 m/s, specific enthalpy (h) of 3248 kJ/kg. The elevation of the inlet is 10 m higher than at the datum. The vapor mixture exits at 15 kPa and a velocity of 180 m/s, specific enthalpy (h) of 2361.01 kJ/kg. The elevation of the exit is 6 m higher than at the datum. Let g = 9.81 m/s². Assuming the ideal gas model and R = 0.462 KJ/(kg.K). The steam specific heat ratio is 1.283. Calculate:
The power out of an adiabatic steam turbine is 5 MW and the steam enters turbine at 2 MPa and velocity of 50 m/s, specific enthalpy (h) of 3248 kJ/kg. The elevation of the inlet is 10 m higher than at the datum. The vapor mixture exits at 15 kPa and a velocity of 180 m/s, specific enthalpy (h) of 2361.01 kJ/kg. The elevation of the exit is 6 m higher than at the datum. Let g = 9.81 m/s². Assuming the ideal gas model and R = 0.462 KJ/(kg.K). The steam specific heat ratio is 1.283. Calculate:
O Consider a 0.8 m high and 0.5 m wide window with thickness of 8 mm and thermal conductivity of k = 0.78 W/m °C. For dry day, the temperature of outdoor is -10 °C and the inner room temperature is 20°C. Take the heat transfer coefficient on the inner and outer surface of the window to be h₁ = 10 W/m² °C and h₂ = 40 W/m² °C which includes the effects of insulation. Determine:
Knowledge Booster
Background pattern image
Chemical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The