#2 The isothermal gas-phase degradation reaction is given below. Pure ethane enters a flow reactor at 6 atm and 1100 K, with the pressure drop can be negligible. This reaction follows an elementary rate law. C2H6 → C2H4 + H2 a) Express the concentration of each species solely as a function of conversion. b) Write the reaction rate (the unit is mol/L-s) solely as a function of conversion (*rate constant k will be used in this mathematical expression). What is the unit of k. c) If this reaction is carried out in a constant volume batch reactor now, how to express the concentration of each species solely as a function of conversion?

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
#2 The isothermal gas-phase degradation reaction is given below. Pure ethane enters a flow
reactor at 6 atm and 1100 K, with the pressure drop can be negligible. This reaction follows an
elementary rate law.
C2H6 → C2H4 + H2
a) Express the concentration of each species solely as a function of conversion.
b) Write the reaction rate (the unit is mol/L-s) solely as a function of conversion (*rate
constant k will be used in this mathematical expression). What is the unit of k.
c) If this reaction is carried out in a constant volume batch reactor now, how to express the
concentration of each species solely as a function of conversion?
Transcribed Image Text:#2 The isothermal gas-phase degradation reaction is given below. Pure ethane enters a flow reactor at 6 atm and 1100 K, with the pressure drop can be negligible. This reaction follows an elementary rate law. C2H6 → C2H4 + H2 a) Express the concentration of each species solely as a function of conversion. b) Write the reaction rate (the unit is mol/L-s) solely as a function of conversion (*rate constant k will be used in this mathematical expression). What is the unit of k. c) If this reaction is carried out in a constant volume batch reactor now, how to express the concentration of each species solely as a function of conversion?
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The