College Physics:
11th Edition
ISBN: 9781305965515
Author: SERWAY, Raymond A.
Publisher: Brooks/Cole Pub Co
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 65AP
(a)
To determine
The velocity of the girl (
v → g i r l
).
(b)
To determine
The forces acting on the system during its motion.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An amateur skater of mass M is trapped in the middle of an ice rink and is unable to return to the side where there is no ice. Every motion she makes causes her to slip on the ice and remain in the same spot. She decides to try to return to safety by throwing her gloves of mass m in the directionopposite the safe side. (a) She throws the gloves as hard as she can, and they leave her hand with a horizontal velocity ν→gloves. Explain whether or not she moves. (b) If she does move, calculate her velocity ν→girl relative to the Earth after she throws the gloves. (c) Discuss her motion from the point of view of the forces acting on her.
A hockey goalie is standing on ice. Another player fires a puck (m = 0.170 kg) at the goalie with a velocity of +46.7 m/s. (a) If the
goalie catches the puck with his glove in a time of 2.34 x 10 s, what is the magnitude of the average force exerted on the goalie by
the puck? (b) Instead of catching the puck, the goalie slaps it with his stick and returns the puck straight back to the player with a
velocity of -46.7 m/s. The puck and stick are in contact for a time of 2.34 x 10 s. Now, what is the magnitude of the average force
exerted on the goalie by the puck? Verify that your answers to parts (a) and (b) are consistent with the conclusion of Conceptual
Example 3.
(a) Number
Units
(b) Number
Units
A 52.0-kg skater is traveling due east at a speed of 1.70 m/s. A 54.0-kg skater is moving due south at a speed of 4.90 m/s. They collide
and hold on to each other after the collision, managing to move off at an angle # south of east, with a speed of vå. Find (a) the angle § and
(b) the speed vf, assuming that friction can be ignored.
(a) Number
(b) Number
Units
Units
◄►
Chapter 6 Solutions
College Physics:
Ch. 6.1 - Two masses m1 and m2, with m1 m2, have equal...Ch. 6.2 - A boy standing at one end of a floating raft that...Ch. 6.3 - A car and a large truck traveling at the same...Ch. 6.3 - An object of mass m moves to the right with a...Ch. 6.3 - A skater is using very low-friction rollerblades....Ch. 6.3 - In a perfectly inelastic one-dimensional collision...Ch. 6.3 - A bowling ball onboard a space station is floating...Ch. 6 - A batter bunts a pitched baseball, blocking the...Ch. 6 - If two objects collide and one is initially at...Ch. 6 - Two carts on an air track have the same mass and...
Ch. 6 - Two identical ice hockey pucks, labeled A and B,...Ch. 6 - A ball of clay of mass m is thrown with a speed v...Ch. 6 - A skater is standing still on a frictionless ice...Ch. 6 - A baseball is thrown from the outfield toward home...Ch. 6 - (a) If two automobiles collide, they usually do...Ch. 6 - Your physical education teacher throws you a...Ch. 6 - Two cans move in the same direction along a...Ch. 6 - For the situation described in the previous...Ch. 6 - An air bag inflates when a collision occurs,...Ch. 6 - At a bowling alley, two players each score a spare...Ch. 6 - An open box slides with constant speed across the...Ch. 6 - Does a larger net force exerted on an object...Ch. 6 - Does a larger net force always produce a larger...Ch. 6 - If two particles have equal momenta, are their...Ch. 6 - Two particles of different mass start from rest....Ch. 6 - Calculate the magnitude of the linear momentum for...Ch. 6 - A high-speed photograph of a club hitting a golf...Ch. 6 - A pitcher claims he can throw a 0.145-kg baseball...Ch. 6 - A 0.280-kg volleyball approaches a player...Ch. 6 - Drops of rain fall perpendicular to the roof of a...Ch. 6 - Show that the kinetic energy of a particle of mass...Ch. 6 - An object has a kinetic energy of 275 J and a...Ch. 6 - An estimated force vs. time curve for a baseball...Ch. 6 - A soccer player takes a corner kick, lofting a...Ch. 6 - A man claims he ran safely hold on to a 12.0-kg...Ch. 6 - A ball of mass 0.150 kg is dropped from rest from...Ch. 6 - A tennis player receives a shot with the ball...Ch. 6 - A car is stopped for a traffic signal. When the...Ch. 6 - A 65.0-kg basketball player jumps vertically and...Ch. 6 - The force shown in the force vs. time diagram in...Ch. 6 - A force of magnitude Fx acting in the x-direction...Ch. 6 - The forces shown in the force vs. time diagram in...Ch. 6 - A 3.00-kg steel ball strikes a massive wall at...Ch. 6 - The front 1.20 m of a 1 400-kg car is designed as...Ch. 6 - A pitcher throws a 0.14-kg baseball toward the...Ch. 6 - High-speed stroboscopic photographs show that the...Ch. 6 - A rifle with a weight of 30.0 N fires a 5.00-g...Ch. 6 - A 45.0-kg girl is standing on a 150.-kg plank. The...Ch. 6 - This is a symbolic version of Problem 23. A girl...Ch. 6 - Squids are the fastest marine invertebrates, using...Ch. 6 - A 75-kg fisherman in a 125-kg boat throws a...Ch. 6 - A 65.0-kg person throws a 0.045 0-kg snowball...Ch. 6 - Two objects of masses m1 = 0.56 kg m2 = 0.88 kg...Ch. 6 - An astronaut in her space suit has a total mass of...Ch. 6 - Three ice skaters meet at the center of a rink and...Ch. 6 - a man of mass m1 = 70.0 kg is skating at v1 = 8.00...Ch. 6 - An archer shoots an arrow toward a 3.00 102-g...Ch. 6 - Gayle runs at a speed of 4.00 m/s and dives on a...Ch. 6 - A 75.0-kg ice skater moving at 10.0 m/s crashes...Ch. 6 - A railroad car of mass 2.00 104 kg moving at 3.00...Ch. 6 - This is a symbolic version of Problem 35. A...Ch. 6 - Consider the ballistic pendulum device discussed...Ch. 6 - A cue ball traveling at 4.00 m/s makes a glancing,...Ch. 6 - In a Broadway performance, an 80.0-kg actor swings...Ch. 6 - Two shuffleboard disks of equal mass, one orange...Ch. 6 - A 0.030-kg bullet is fired vertically at 200 m/s...Ch. 6 - An bullet of mass m = 8.00 g is fired into a block...Ch. 6 - A 12.0-g bullet is fired horizontally into a 100-g...Ch. 6 - A 1200-kg car traveling initially with a speed of...Ch. 6 - A tennis ball of mass 57.0 g is held just above a...Ch. 6 - A space probe, initially at rest, undergoes an...Ch. 6 - A 25.0-g object moving to the right at 20.0 cm/s...Ch. 6 - A billiard ball rolling across a table at 1.50 m/s...Ch. 6 - A 90.0-kg fullback running cast with a speed of...Ch. 6 - Identical twins, each with mass 55.0 kg, are on...Ch. 6 - A 2.00 1O3-kg car moving cast at 10.0 m/s...Ch. 6 - Two automobiles of equal mass approach an...Ch. 6 - A billiard ball moving at 5.00 m/s strikes a...Ch. 6 - The Merlin rocket engines developed by SpaceX...Ch. 6 - One of the first ion engines on a commercial...Ch. 6 - NASAs Saturn V rockets that launched astronauts to...Ch. 6 - Prob. 57PCh. 6 - A spaceship at rest relative to a nearby star in...Ch. 6 - A spaceships orbital maneuver requires a speed...Ch. 6 - In research in cardiology and exercise physiology,...Ch. 6 - Most of us know intuitively that in a head-on...Ch. 6 - Consider a frictionless track as shown in Figure...Ch. 6 - A 2.0-g particle moving at 8.0 m/s makes a...Ch. 6 - A bullet of mass m and speed v passes completely...Ch. 6 - Prob. 65APCh. 6 - A 0.400-kg blue bead slides on a frictionless,...Ch. 6 - A 730-N man stands in the middle of a frozen pond...Ch. 6 - An unstable nucleus of muss 1.7 1026 kg,...Ch. 6 - Two blocks of masses m1 and m2 approach each other...Ch. 6 - Two blocks of masses m1 = 2.00 kg and m2 = 4.00 kg...Ch. 6 - A block with mass m1 = 0.500 kg is released from...Ch. 6 - Two objects of masses m and 3m are moving toward...Ch. 6 - A small block of mass m1 = 0.500 kg is released...Ch. 6 - A car of mass m moving at a speed v1 collides and...Ch. 6 - A cannon is rigidly attached to a carriage, which...Ch. 6 - Two blocks collide on a frictionless surface....Ch. 6 - (a) A car traveling due east strikes a car...Ch. 6 - A 60-kg soccer player jumps vertically upwards and...Ch. 6 - A boy of mass mb and his girlfriend of mass mg,...Ch. 6 - A 20.0-kg toboggan with 70.0-kg driver is sliding...Ch. 6 - Measuring the speed of a bullet. A bullet of mass...Ch. 6 - A flying squid (family Ommastrephidae) is able to...Ch. 6 - A 0.30-kg puck, initially at rest on a...Ch. 6 - A wooden block of mass M rests on a table over a...Ch. 6 - A 1.25-kg wooden block rests on a table over a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 2-kg object moving to the right with a speed of 4 m/s makes a head-on, elastic collision with a 1-kg object that is initially at rest. The velocity of the 1-kg object after the collision is (a) greater than 4 m/s, (b) less than 4 m/s, (c) equal to 4 m/s, (d) zero, or (e) impossible to say based on the information provided.arrow_forwardWhat exhaust speed is required to accelerate a rocket in deep space from 800 m/s to 1000 m/s in 5.0 s if the total rocket mass is 1200 kg and the rocket only has 50 kg of fuel left?arrow_forwardA model rocket engine has an average thrust of 5.26 N. It has an initial mass of 25.5 g, which includes fuel mass of 12.7 g. The duration of its burn is 1.90 s. (a) What is the average exhaust speed of the engine? (b) This engine is placed in a rocket body of mass 53.5 g. What is the final velocity of the rocket if it were to be fired from rest in outer space by an astronaut on a spacewalk? Assume the fuel burns at a constant rate.arrow_forward
- A cannon is rigidly attached to a carriage, which can move along horizontal rails but is connected to a post by a large spring, initially unstretchcd and with force constant k = 2.00 104 N/m, as shown in Figure P8.60. The cannon fires a 200-kg projectile at a velocity of 125 m/s directed 45.0 above the horizontal. (a) Assuming that the mass of the cannon and its carriage is 5 000 kg, find the recoil speed of the cannon. (b) Determine the maximum extension of the spring. (c) Find the maximum force the spring exerts on the carriage. (d) Consider the system consisting of the cannon, carriage, and projectile. Is the momentum of this system conserved during the firing? Why or why not?arrow_forwardFind the center of mass of a rectangular material of length a and width b made up of a material of nonuniform density. The density is such that when the rectangle is placed in the xy-plane, the density is given by (x,y)=0xy .arrow_forwardA girl of mass mg is standing on a plank of mass mp. Both are originally at rest on a frozen lake that constitutes a frictionless, flat surface. The girl begins to walk along the plank at a constant velocity vgp to the right relative to the plank. (The subscript gp denotes the girl relative to plank.) (a) What is the velocity vpi of the plank relative to the surface of the ice? (b) What is the girls velocity vgi relative to the ice surface?arrow_forward
- A hockey puck of mass 150 g is sliding due east on a frictionless table with a speed of 10 m/s. Suddenly, a constant force of magnitude 5 N and direction due north is applied to the puck for 1.5 s. Find the north and east components of the momentum at the end of the 1.3-s interval.arrow_forwardInitially, ball 1 rests on an incline of height h, and ball 2 rests on an incline of height h/2 as shown in Figure P11.40. They are released from rest simultaneously and collide in the trough of the track. If m2 = 4 m1 and the collision is elastic, find an expression for the velocity of each ball immediately after the collision. FIGURE P11.40 Problems 40 and 41.arrow_forwardA 2000-kg railway freight car coasts at 4.4 m/s underneath a grain terminal, which dumps grain directly down into the freight car. If the speed of the loaded freight car must not go below 3.0 m/s, what is the maximum mass of grain that it can accept?arrow_forward
- If a rainstorm drops 1 cm of rain over an area of 10km2 in the period of 1 hour, what is the momentum of the rain that falls in one second? Assume the terminal velocity of a raindrop is 10 m/s.arrow_forwardSand from a stationary hopper falls onto a moving conveyor belt at the rate of 5.00 kg/s as shown in Figure P8.64. The conveyor belt is supported by frictionless rollers and moves at a constant speed of v = 0.750 m/s under the action of a constant horizontal external force Fext supplied by the motor that drives the belt. Find (a) the sands rate of change of momentum in the horizontal direction, (b) the force of friction exerted by the belt on the sand, (c) the external force Fext, (d) the work done by Fext in 1 s, and (e) the kinetic energy acquired by the falling sand each second due to the change in its horizontal motion. (f) Why are the answers to parts (d) and (e) different? Figure P8.64arrow_forwardA rocket has total mass Mi = 360 kg, including Mfuel = 330 kg of fuel and oxidizer. In interstellar space, it starts from rest at the position x = 0, turns on its engine at time t = 0, and puts out exhaust with relative speed ve = 1 500 m/s at the constant rate k = 2.50 kg/s. The fuel will last for a burn time of Tb = Mfuel/k = 330 kg/(2.5 kg/s) = 132 s. (a) Show that during the burn the velocity of the rocket as a function of time is given by v(t)=veln(1ktMi) (b) Make a graph of the velocity of the rocket as a function of time for times running from 0 to 132 s. (c) Show that the acceleration of the rocket is a(t)=kveMikt (d) Graph the acceleration as a function of time. (c) Show that the position of the rocket is x(t)=ve(Mikt)ln(1ktMi)+vet (f) Graph the position during the burn as a function of time.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY