CONNECT IA GENERAL ORGANIC&BIO CHEMISTRY
4th Edition
ISBN: 9781260562620
Author: SMITH
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 64P
Interpretation Introduction
Interpretation:
The direction that reaction to achieve the equilibrium should be determined.
Concept Introduction:
The net concentrations of the reactants and products do not change at equilibrium. They are used to define an expression and the equilibrium constant (K) which has a characteristic value.
For a reaction at a given temperature.
Le Chatelier's principle is a general rule used to explain the effect of a change in reaction conditions on equilibrium.
Le Chatelier's principle states:
If a chemical system at equilibrium is disturbed, equilibrium will shift in the direction to counteract the change.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
CONNECT IA GENERAL ORGANIC&BIO CHEMISTRY
Ch. 6.1 - Prob. 6.1PPCh. 6.1 - Prob. 6.1PCh. 6.1 - Prob. 6.2PPCh. 6.1 - Prob. 6.2PCh. 6.2 - Using the values in Table 6.2, give H for each...Ch. 6.2 - Prob. 6.4PPCh. 6.2 - Answer the following questions using the given...Ch. 6.2 - Given the H and balanced equation in Sample...Ch. 6.2 - Prob. 6.6PPCh. 6.3 - Prob. 6.7PP
Ch. 6.4 - Consider the reaction of ozone (O3) with nitrogen...Ch. 6.4 - Draw an energy diagram for an uncatalyzed...Ch. 6.5 - Identify the forward and reverse reactions in each...Ch. 6.5 - Write the expression for the equilibrium constant...Ch. 6.5 - Consider the reversible reaction AB, with K=1....Ch. 6.5 - Given each equilibrium constant, state whether the...Ch. 6.5 - Consider the following reaction:...Ch. 6.5 - Using the equilibrium mixture of reactants and...Ch. 6.5 - Calculate the equilibrium constant for each...Ch. 6.5 - Consider the representation depicted in the...Ch. 6.6 - Prob. 6.13PPCh. 6.6 - Prob. 6.14PPCh. 6.6 - wThe conversion of H2O to H2 and O2 is an...Ch. 6.6 - The reaction of O2 with NO to form NO2 and O2 is...Ch. 6.6 - wIn which direction is the equilibrium shifted in...Ch. 6.6 - Label each statement about the following...Ch. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - Prob. 13PCh. 6 - Prob. 14PCh. 6 - Prob. 15PCh. 6 - Prob. 16PCh. 6 - Prob. 17PCh. 6 - Prob. 18PCh. 6 - Prob. 19PCh. 6 - Prob. 20PCh. 6 - Prob. 21PCh. 6 - Prob. 22PCh. 6 - Prob. 23PCh. 6 - Prob. 24PCh. 6 - Prob. 25PCh. 6 - Prob. 26PCh. 6 - Prob. 27PCh. 6 - Ammonia ( NH3 ) decomposes to hydrogen and...Ch. 6 - Prob. 29PCh. 6 - Ethanol ( C2H6O ), a gasoline additive, is formed...Ch. 6 - Prob. 31PCh. 6 - Prob. 32PCh. 6 - Prob. 33PCh. 6 - Prob. 34PCh. 6 - Draw an energy diagram for the following reaction...Ch. 6 - Prob. 36PCh. 6 - State two reasons why increasing temperature...Ch. 6 - Why does decreasing concentration decrease the...Ch. 6 - Prob. 39PCh. 6 - Prob. 40PCh. 6 - Which of the following affect the rate of a...Ch. 6 - Prob. 42PCh. 6 - How does a catalyst affect each of the following:...Ch. 6 - What is the difference between a catalyst and an...Ch. 6 - Prob. 45PCh. 6 - Consider the representation depicted in the...Ch. 6 - For each value, are the reactants or products...Ch. 6 - Prob. 48PCh. 6 - Prob. 49PCh. 6 - Prob. 50PCh. 6 - Prob. 51PCh. 6 - Consider three different equilibrium mixtures...Ch. 6 - Write an expression for the equilibrium constant...Ch. 6 - Write an expression for the equilibrium constant...Ch. 6 - Prob. 55PCh. 6 - Use each expression for the equilibrium constant...Ch. 6 - Prob. 57PCh. 6 - Consider the following reaction:...Ch. 6 - Prob. 59PCh. 6 - Which of the following representations ([1][3]) of...Ch. 6 - Consider the following reaction....Ch. 6 - Consider the following reaction. H2(g)+I2(g)2HI(g)...Ch. 6 - Prob. 63PCh. 6 - Prob. 64PCh. 6 - Consider the reaction of N2(g)+O2(g)2NO(g). What...Ch. 6 - Consider the reaction of H2(g)+F2(g)2HF(g). What...Ch. 6 - Prob. 67PCh. 6 - Consider the reversible reaction ABA+B, shown at...Ch. 6 - Consider the endothermic conversion of oxygen to...Ch. 6 - Consider the exothermic reaction:...Ch. 6 - Consider the exothermic reaction:...Ch. 6 - Consider the endothermic reaction:...Ch. 6 - Consider the gas-phase reaction of ethylene...Ch. 6 - Methanol (CHO), which is used as a fuel in race...Ch. 6 - Prob. 75PCh. 6 - How does a catalytic converter clean up automobile...Ch. 6 - Prob. 77PCh. 6 - The reaction of salicylic acid with acetic acid...Ch. 6 - Prob. 79PCh. 6 - Prob. 80PCh. 6 - Prob. 81PCh. 6 - Prob. 82PCh. 6 - Prob. 83CPCh. 6 - Prob. 84CP
Knowledge Booster
Similar questions
- When a mixture of hydrogen and bromine is maintained at normal atmospheric pressure and heated above 200. °C in a closed container, the hydrogen and bromine react to form hydrogen bromide and a gas-phase equilibrium is established. Write a balanced chemical equation for the equilibrium reaction. Use bond enthalpies from Table 6.2 ( Sec. 6-6b) to estimate the enthalpy change for the reaction. Based on your answers to parts (a) and (b), which is more important in determining the position of this equilibrium, the entropy effect or the energy effect? In which direction will the equilibrium shift as the temperature increases above 200. °C? Explain. Suppose that the pressure were increased to triple its initial value. In which direction would the equilibrium shift? Why is the equilibrium not established at room temperature?arrow_forward. Explain what it means that a reaction has reached a state of chemical equilibrium. Explain why equilibrium is a dynamic state: Does a reaction really “stop” when the system reaches a state of equilibrium? Explain why, once a chemical system has reached equilibrium, the concentrations of all reactants remain constant with time. Why does this constancy of concentration not contradict our picture of equilibrium as being dynamic? What happens to the rates of the forward and reverse reactions as a system proceeds to equilibrium from a starting point where only reactants are present?arrow_forwardComplete each of these reactions by filling in the blanks. Predict whether each reaction is product-favored or reactant-favored, and explain your reasoning. (a) (aq)+HSO4(aq)HCN(aq)+SO42(aq) (b) H2S (aq) + H2O() H3O+(aq) + _____ (aq) (c) H(aq) + H2O() OH(aq) +_____ (g)arrow_forward
- Based on the diagrams, chemical reaction, and reaction conditions depicted in Problem 9-83, which of the diagrams represents the equilibrium mixture if the numerical value of the equilibrium constant is 9.0?arrow_forwardWhen writing an equation, how is a reversible reaction distinguished from a nonreversible reaction?arrow_forwardWrite an equation for an equilibrium system that would lead to the following expressions (ac) for K. (a) K=(Pco)2 (PH2)5(PC2H6)(PH2O)2 (b) K=(PNH3)4 (PO2)5(PNO)4 (PH2O)6 (c) K=[ ClO3 ]2 [ Mn2+ ]2(Pcl2)[ MNO4 ]2 [ H+ ]4 ; liquid water is a productarrow_forward
- What is the law of mass action? Is it true that the value of K depends on the amounts of reactants and products mixed together initially? Explain. Is it true that reactions with large equilibrium constant values are very fast? Explain. There is only one value of the equilibrium constant for a particular system at a particular temperature, but there is an infinite number of equilibrium positions. Explain.arrow_forward7-22 If you add a piece of marble, CaCO3 to a 6 M HCI solution at room temperature, you will see some bubbles form around the marble as gas slowly rises. If you crush another piece of marble and add it to the same solution at the same temperature, you will see vigorous gas formation, so much so that the solution appears to be boiling. Explain.arrow_forward7-17 If a certain reaction takes 16 h to go to completion at 10°C, what temperature should we run it if we want it to go to completion in 1 h?arrow_forward
- Suppose a reaction has the equilibrium constant K = 1.3 108. What does the magnitude of this constant tell you about the relative concentrations of products and reactants that will be present once equilibrium is reached? Is this reaction likely to be a good source of the products?arrow_forwardIndicate whether or not each of the following changes would affect the value of a systems equilibrium constant. a. Addition of a product to the equilibrium mixture b. Increase in the systems total pressure c. Increase in the systems temperature d. Addition of both a reactant and a product to the equilibrium mixturearrow_forwardIndicate whether or not each of the following changes would affect the value of a systems equilibrium constant. a. Removal of a reactant from the equilibrium mixture b. Decrease in the systems total pressure c. Decrease in the systems temperature d. Addition of a catalyst to the equilibrium mixturearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Introduction to General, Organic and Biochemistry
Chemistry
ISBN:9781285869759
Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar Torres
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning