Fundamentals of Momentum, Heat, and Mass Transfer
Fundamentals of Momentum, Heat, and Mass Transfer
6th Edition
ISBN: 9781118947463
Author: James Welty, Gregory L. Rorrer, David G. Foster
Publisher: WILEY
Question
Book Icon
Chapter 6, Problem 6.42P
Interpretation Introduction

Interpretation:

The amount of heat transferred to the turbine in Btu/h is to be calculated.

Concept Introduction:

The general energy balance equation according to the first law of thermodynamics written for a control volume is:

  δQdtδWdt=C.S(e+Pρ)ρ(vn)dA+tC.VeρdV+δWμdt  ........(1)

Here, C.S is the control surface over which the integral dA is taken, C.V is the control volume over which the integral dV is taken, ρ is the density of the fluid, v is the velocity vector, n is the direction of the vector v , δQ/dt is the rate of heat added (positive) or removed (negative) from the system, δW/dt is the rate of work done by (positive) or on (negative) the system, and δWμ/dt is the rate of work done to overcome the viscous effect at the control surface. The product vn is scalar defined as:

  vn=|v||n|cosθ

Blurred answer
Students have asked these similar questions
Assignment 2. Example. The diffusivity of the vapour of a volatile liquid in air can be conveniently determined by Winkelmann's method in which liquid is contained in a narrow diameter vertical tube, maintained at a constant temperature, and an air stream is passed over the top of the tube sufficiently rapidly to ensure that the partial pressure of the vapour there remains approximately zero. On the assumption that the vapour is transferred from the surface of the liquid to the air stream by molecular diffusion, calculate the diffusivity of carbon tetrachloride vapour in air at 321 K and atmospheric pressure from the following experimental data: Time from commencement of experiment, (t x1 03 s) Liquid level (mm) 0.0 0.0 1.6 2.5 11.1 12.9 27.4 23-2 80-2 43.9 117.5 54-7 168.6 67.0 199.7 73-8 289-3 90-3 383-1 104.8 The vapour pressure of carbon tetrachloride at 321 K is 37.6 kN/m² and the density of the liquid is 1540 kg/m³. Take the kilogram molecular volume as 22.4 m³.
Please.... please, provide me with full calculation (more details) because this question I sent it previously but I did not receive a good result yet.
Sulphur dioxide is absorbed in a packed bed absorption tower with 25 mm ceramic Intalox saddles (packing factor of 300 m) using water solvent in a countercurrent arrangement. The feed gas contains 0.05 kmol SO-/kmol air, and it is desired to reduce the SO, content of exit gas to 3% of its inlet concentration. The gas flow rate is 0.067 kmol's of air, and the water rate is 3,08 kmol/s. The equilibrium relation is given by: Y= 30 X. Calculate: (a) number of transfer units; (b) column diameter, (c) the height of the packing. Assuming the entire process is gas-film controlled. Design for a pressure drop of 21 mm H-O/m packing. P = 1.21 kg/m: p = 1000 kg/m³: д, = 0.018×10-3 N.s/m² = 10³ N./m²; D₁ =1.45x10 m³/s; D₁ = 1.7x10m²/s. H=0.011, (Sc)( 0.305 111 De 2 3.05) 035 H₁ = 0.305 (Sc) K (305)
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The