Fundamentals of Momentum, Heat, and Mass Transfer
Fundamentals of Momentum, Heat, and Mass Transfer
6th Edition
ISBN: 9781118947463
Author: James Welty, Gregory L. Rorrer, David G. Foster
Publisher: WILEY
Question
Book Icon
Chapter 6, Problem 6.29P
Interpretation Introduction

Interpretation: The exit velocity and the pressure drop at point-1 are to be determined by using the energy balance equation.

Concept introduction: The Energy balance given by the Bernoulli’s equation in which the sum of Potential head, Kinetic head and Pressure head is constant. The Bernoulli equation across 2 points of any system is given by:-

  P1ρg+v122g+ Z1=P2ρg+v222g+ Z2   ...... (1)

The notations used in equation (1) are:-

P1 and P2 are pressure at inlet and outlet

v1 and v2 are velocity at inlet and outlet

Z1 and Z2 are the locations of the fluid.

  ρ = Density of the fluid

hL = Head loss in the section

H = Head developed

g = Acceleration due to gravity

The mass balance equation state that the mass flow in is equal to the mass flow out.

  m˙M=m˙A+m˙W   ...... (2)

  m˙M = Mass flow rate of the mixture

  m˙A = Mass flow rate of the air

  m˙W = Mass flow rate of the water

The mass flow rate is given as,

  m˙=ρAv   ...... (3)

A = Area of the pump

The control volume around the mixing is given as,

  Fy=C.S.vyρ(v.n )dA   ...... (4)

Fy = Force on the body and is given as,

  Fy=ΔPA   ...... (5)

  ΔP = Pressure drop in the fluid

Blurred answer
Students have asked these similar questions
An 8-foot ion exchange bed needs to be backwashed with water to remove impurities. The particles have a density of 1.24 g/cm³ and an average size of 1.1 mm.   Calculate:   a. The minimum fluidization velocity using water at 30°C?   b. The velocity required to expand the bed by 30%?   Assumptions: The ion exchange bed particles are spherical (sphericity = 1.1), and the minimum fluidization porosity (ɛM) is 0.3.   Notes: At 30°C, the viscosity (μ) of water is 0.797 cP, and the density (ρ) is 0.995 g/cm³.
fluidized bed reactor uses a solid catalyst with a particle diameter of 0.25 mm, a bulk density of 1.50 g/mL, and a sphericity of 0.90. Under packed bed conditions, the porosity is 0.35, and the bed height is 2 m. The gas enters from the bottom of the reactor at a temperature of 600°C, with a viscosity of 0.025 cP and a density of 0.22 lb/ft³. At minimum fluidization, the porosity reaches 0.45. Calculate: a. The minimum superficial velocity (VM) of the gas entering the fluidized column. b. The bed height if V = 2 VM c. The pressure drop under conditions where V =2.5 VM
A fluidized bed reactor uses a solid catalyst with a particle diameter of 0.25 mm, a bulk density of 1.50 g/mL, and a sphericity of 0.90. Under packed bed conditions, the porosity is 0.35, and the bed height is 2 m. The gas enters from the bottom of the reactor at a temperature of 600°C, with a viscosity of 0.025 cP and a density of 0.22 lb/ft³. At minimum fluidization, the porosity reaches 0.45.   Calculate:   a. The minimum superficial velocity (VM) of the gas entering the fluidized column.   b. The bed height if V = 2 VM   c. The pressure drop under conditions where V =2.5 VM
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Introduction to Chemical Engineering Thermodynami...
Chemical Engineering
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:McGraw-Hill Education
Text book image
Elementary Principles of Chemical Processes, Bind...
Chemical Engineering
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY
Text book image
Elements of Chemical Reaction Engineering (5th Ed...
Chemical Engineering
ISBN:9780133887518
Author:H. Scott Fogler
Publisher:Prentice Hall
Text book image
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:9781119285915
Author:Seborg
Publisher:WILEY
Text book image
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:9781285061238
Author:Lokensgard, Erik
Publisher:Delmar Cengage Learning
Text book image
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:9780072848236
Author:Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:McGraw-Hill Companies, The