EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 9780100460300
Author: SERWAY
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 6.37AP
A car travels clockwise at constant speed around a circular section of a horizontal road as shown in the aerial view of Figure P6.24. Find the directions of its velocity and acceleration at (a) position Ⓐ and (b) position Ⓑ.
Figure P6.24
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The length of the arc is 250 meters, and the time to turn is 37 seconds. Calculate
the x-component of the acceleration (in m/s2) at point B, where the angle is 69°.
3. A car initially traveling
v eastward turns north by
traveling in a circular
path at uniform speed
as shown in Figure P6.3.
The length of the arc
ABC is 235 m, and the
B)
y
Calculate the average speed in m/s. The numbers:
• Length of the arc: 219 meters
• Time to turn: 49 seconds
35.0°
C
В
car completes the turn
in 36.0 s.
Now calculate the y-component of the average acceleration. The book itself is
6)
unclear whether what's asked for is the average of the vector, the magnitude of
A
the vector average, or the average of the magnitude. But the answer at the back
of the book indicates the vector.
Figure P6.3
• Length of the arc: 227 meters
• Time to turn: 46 seconds
A boy whirls a stone in a horizontal circle of radius 1.5 m and at height 2.0 m above level ground. The string breaks, and the stone flies off horizontally and strikes the ground after traveling a horizontal distance of 10 m.What is the magnitude of the centripetal acceleration of the stone during the circular motion?
An inventor wants to launch small satellites into orbit by launching them straight up from
the surface of the earth, at very high speeds.
a) With what speed should he launch the satellite if it is to have a speed of 500 m/s at a
height of 400 km? Ignore air resistance.
b) By what percentage would your answer be in error if you used a flat earth
approximation?
y2 400 km r R, + y2
Vy= 500 ta/s
After:
y =0 km = R.
Before:
Re
Earth
Chapter 6 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 6 - You are riding on a Ferris wheel that is rotating...Ch. 6 - A bead slides at constant speed along a curved...Ch. 6 - Consider the passenger in the car making a left...Ch. 6 - A basketball and a 2-inch-diameter steel ball,...Ch. 6 - A child is practicing for a BMX race. His speed...Ch. 6 - Consider a skydive r who has stepped from a...Ch. 6 - A door in a hospital has a pneumatic closer that...Ch. 6 - A pendulum consists of a small object called a bob...Ch. 6 - As a raindrop falls through the atmosphere, its...Ch. 6 - An office door is given a sharp push and swings...
Ch. 6 - Before takeoff on an airplane, an inquisitive...Ch. 6 - What forces cause (a) an automobile, (b) a...Ch. 6 - A falling skydiver reaches terminal speed with her...Ch. 6 - An object executes circular motion with constant...Ch. 6 - Describe the path of a moving body in the event...Ch. 6 - The observer in the accelerating elevator of...Ch. 6 - Prob. 6.6CQCh. 6 - It has been suggested dial rotating cylinders...Ch. 6 - Consider a small raindrop and a large raindrop...Ch. 6 - Why does a pilot lend to black out when pulling...Ch. 6 - Prob. 6.10CQCh. 6 - If the current position and velocity of every...Ch. 6 - A light string can support a stationary hanging...Ch. 6 - Whenever two Apollo astronauts were on the surface...Ch. 6 - In the Bohr model of the hydrogen atom, an...Ch. 6 - A curve in a road forms part of a horizontal...Ch. 6 - In a cyclotron (one type of particle accelerator),...Ch. 6 - A car initially traveling eastward turns north by...Ch. 6 - A space station, in the form of a wheel 120 m in...Ch. 6 - Consider a conical pendulum (Fig. P6.8) with a bob...Ch. 6 - A coin placed 30.0 cm from the center of a...Ch. 6 - Why is the following situation impossible? The...Ch. 6 - A crate of eggs is located in the middle of the...Ch. 6 - A pail of water is rotated in a vertical circle of...Ch. 6 - A hawk flies in a horizontal arc of radius 12.0 m...Ch. 6 - A 40.0-kg child swings in a swing supported by two...Ch. 6 - A child of mass m swings in a swing supported by...Ch. 6 - A roller-coaster car (Fig. P6.16) has a mass of...Ch. 6 - A roller coaster at the Six Flags Great America...Ch. 6 - One end of a cord is fixed and a small 0.500-kg...Ch. 6 - Prob. 6.19PCh. 6 - An object of mass m = 5.00 kg, attached to a...Ch. 6 - All object of mass m = 500 kg is suspended from...Ch. 6 - A child lying on her back experiences 55.0 N...Ch. 6 - A person stands on a scale in an elevator. As the...Ch. 6 - Review. A student, along with her backpack on the...Ch. 6 - A small container of water is placed on a...Ch. 6 - Review. (a) Estimate the terminal speed of a...Ch. 6 - The mass of a sports car is 1 200 kg. The shape of...Ch. 6 - A skydiver of mass 80.0 kg jumps from a...Ch. 6 - Calculate the force required to pull a copper ball...Ch. 6 - A small piece of Styrofoam packing material is...Ch. 6 - Prob. 6.31PCh. 6 - Prob. 6.32PCh. 6 - Assume the resistive force acting on a speed...Ch. 6 - Review. A window washer pulls a rubber squeegee...Ch. 6 - A motorboat cuts its engine when its speed is 10.0...Ch. 6 - You can feel a force of air drag on your hand if...Ch. 6 - A car travels clockwise at constant speed around a...Ch. 6 - The mass of a roller-coaster car, including its...Ch. 6 - A string under a tension of 50.0 N is used to...Ch. 6 - Disturbed by speeding cars outside his workplace,...Ch. 6 - A car of mass m passes over a hump in a road that...Ch. 6 - A childs toy consists of a small wedge that has an...Ch. 6 - A seaplane of total mass m lands on a lake with...Ch. 6 - An object of mass m1 = 4.00 kg is tied to an...Ch. 6 - A ball of mass m = 0.275 kg swings in a vertical...Ch. 6 - Why is the following situation impossible? A...Ch. 6 - (a) A luggage carousel at an airport has the form...Ch. 6 - In a home laundry dryer, a cylindrical tub...Ch. 6 - Prob. 6.49APCh. 6 - A basin surrounding a drain has the shape of a...Ch. 6 - A truck is moving with constant acceleration a up...Ch. 6 - The pilot of an airplane executes a loop-the-loop...Ch. 6 - Review. While learning to drive, you arc in a 1...Ch. 6 - A puck of mass m1 is tied to a string and allowed...Ch. 6 - Because the Earth rotates about its axis, a point...Ch. 6 - Galileo thought about whether acceleration should...Ch. 6 - Figure P6.57 shows a photo of a swing a ride at an...Ch. 6 - Review. A piece of putty is initially located at...Ch. 6 - An amusement park ride consists of a large...Ch. 6 - Members of a skydiving club were given the...Ch. 6 - A car rounds a banked curve as discussed in...Ch. 6 - In Example 6.5, we investigated the forces a child...Ch. 6 - A model airplane of mass 0.750 kg flies with a...Ch. 6 - A student builds and calibrates an accelerometer...Ch. 6 - A 9.00-kg object starting from rest falls through...Ch. 6 - For t 0, an object of mass m experiences no force...Ch. 6 - A golfer tees off from a location precisely at i =...Ch. 6 - A single bead can slide with negligible friction...Ch. 6 - Prob. 6.69CPCh. 6 - Because of the Earths rotation, a plumb bob does...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A cat rides a merry-go-round turning with uniform circular motion. At time 1.4s, the cat's velocity is (5m/s)i + (5m/s) j. measured on a horizontal xy coordinate system. At 9.4, the cat's velocity is (-5m/s)i + (-5m/s) j. What is the magnitude of the cat's centripetal acceleration?arrow_forwardThe figure below shows an object initially at point A traveling in the +x-direction. It turns in a circular path at constant speed until it is traveling in the +y-direction at point C. The quarter-circle arc from A to C is 245 m in length, and the particle moves from A to C in 38.0 s. Point B on the path is 35.0° below the x-axis. 0 35.0⁰ (a) What is the speed of the object (in m/s)? m/s Need Help? (b) What is the magnitude and direction of the acceleration when the object is at point B? (Enter the magnitude in m/s² and the direction in degrees counterclockwise from the +x-axis.) magnitude m/s² direction Read It counterclockwise from the +x-axisarrow_forwardA particle travels in a circular orbit of radius r = 127.9 meters. Where it's speed is changing at a rate of at=11.8 at an instant when it's speed is at v = 33.6 m/s. What is the expression for the magnitude a of the total acceleration of the particle in terms of the variables from the problem statement? a = ?arrow_forward
- A boy whirls a stone in a horizontal circle of radius 1.64 m and at height 2.25 m above level ground. The string breaks, and the stone flies off horizontally and strikes the ground after traveling a horizontal distance of 8.66 m. What is the magnitude of the centripetal acceleration of the stone while in circular motion? Use g=9.81 m/s2.arrow_forwardThe object moves at constant speed along the shown circular path of radius 2m in the horizontal xy plane, with the center at the origin. When the object is at x = - 2 m, its velocity is – (4m/s) j.What is the object's acceleration at y = 2 m? O +(8 m/s²) î O (8 m/s?) î O +(8 m/s²) ĵ O (8 m/s²) ĵarrow_forwardA runner taking part in the 200 m dash must run around the end of a track that has a circular arc with a radius of curvature of 40 m. The runner starts the race at a constant speed. If she completes the 200 m dash in 22.2 s and runs at constant speed throughout the race, what is the magnitude of her centripetal acceleration (in m/s2) as she runs the curved portion of the track? m/s?arrow_forward
- You're designing a highway so that the maximum centripetal acceleration on a curve is no more than 1.3 m/s^2. What is the minimum curvature radius to accommodate a 108 km//h maximum speed? This is about r=V^2/a, right? I have to convert km to meters, then hours to min to seconds. Say the final is (30m/s)^2 /1/3 m/s^2 =692.3 m Does two sig figs mean that 692 is changed to 690 m or something else to get two sig figs? Please explain? If the answer is 62.3 then two figs mean 62. If 63.5, then 64. But 692?arrow_forwardDuring a portion of a vertical loop, an airplane flies in an arc of radius p = 581 m with a constant speed v = 372 km/h. When the airplane is at A, the angle made by v with the horizontal is B = 31°, and rada tracking gives r = 721 m and 8 = 36°. Calculate v,, ve, a,, and O for this instant. Answers: Im/s ve = Im/s Im/s? a, = rad/s?arrow_forwardSuppose a fast-pitch softball player does a windmill pitch, moving her hand through a circular arc with her arm straight. She releases the ball at a speed of 26.4 m/s (about 59.1 mph). Just before the ball leaves her hand, the ball's radial acceleration is 290 m/s2. What is the length of her arm from the pivot point at her shoulder?arrow_forward
- A 2.40 kg granite stone is tied to a rope and spun in a circular path of radius 1.14 m. The stone obtains a maximum speed of 10.0 m/s. What is the magnitude of the maximum radial acceleration (in m/s2) of the stone?arrow_forwardA jet is flying at 120 m/s along a straight line and makes a turn along a circular path level with the ground, remaining at a constant speed. What must be true about the radius R of the circular path if the turn produces a centripetal acceleration of less than 2g on the pilot and jet?arrow_forwardA particle travels along the path y2=6x with a constant speed of 5 m/s. Determine the x and y components of the particle's velocity, and the x and y components of the particle's acceleration when the particle is at x = 4 m, O=28.7°. What is the tangential acceleration? (a,= -a,tan(0)) Vx Choose.. VY Choose... ax Choose. : ay Choose... at Choose... +arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY