STRUCTURAL ANAL.W/MOD MASTERING ACCE
18th Edition
ISBN: 9780134713649
Author: HIBBELER
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 6.35P
To determine
Maximum positive shear at panel CD
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Assuming that the whole DMV is only handled by one queue and one server and both the arrival rate
(20 customer per hour) and the service rate (30 customers per hour) random variables are Markovian.
(a) What is the mean queue length? [3 pts]
(b) Percentage of Idle time of the server? [3 pts]
(c) Average number in the queue? [3 pts]
(d) Average number in the system? [3 pts]
(e) The average wait time in the queue? [3 pts]
(f) The average wait time in the system? [3 pts]
(g) The probability that no one is in the system. [2 pts]
A toll booth on the Thruway experiences an average inter-arrival time of 3 minutes between each
vehicle. As an operator, you want to have a mean queue length of at most 2 vehicles. What mean
service rate (per hour) will the toll booth need to provide?
A freeway is to be designed at a location on level terrain for an annual average daily traffic (AADT)
of 45,000 vehicles per day. For a conversion of AADT to an annual hourly volume, assume that the
K-factor is 0.10 (i.e., the 30th highest hourly volume of the year). In addition, 55% of the peak-hour
traffic volume is expected to travel in the peak direction (D = 0.55). This freeway segment will be
for regular commuters. Other estimates include: PHF of 0.95, free-flow speed of 65 mph, and 20%
trucks of the traffic stream. In order to determine the number of lanes required to provide at least
LOS C, answer the following questions.
(a) Determine Free Flow Speed (FFS) [4 pts]
(b) Find the directional design-hour volume (DDHV) [4 pts]
(c) Find fHv [4 pts]
(d) Determine the number of lanes required. [4 pts]
(e) Check the expected LOS for 2-directional lanes on this freeway segment. [4 pts]
Chapter 6 Solutions
STRUCTURAL ANAL.W/MOD MASTERING ACCE
Ch. 6 - Draw the influence lines for (a) the moment at C,...Ch. 6 - Prob. 6.2PCh. 6 - Prob. 6.3PCh. 6 - Prob. 6.4PCh. 6 - Prob. 6.5PCh. 6 - Prob. 6.6PCh. 6 - Prob. 6.7PCh. 6 - Prob. 6.8PCh. 6 - Prob. 6.9PCh. 6 - Prob. 6.10P
Ch. 6 - Prob. 6.11PCh. 6 - Prob. 6.12PCh. 6 - Prob. 6.13PCh. 6 - Prob. 6.14PCh. 6 - Prob. 6.15PCh. 6 - Prob. 6.16PCh. 6 - Prob. 6.17PCh. 6 - Prob. 6.18PCh. 6 - Prob. 6.19PCh. 6 - Prob. 6.20PCh. 6 - Prob. 6.21PCh. 6 - Prob. 6.22PCh. 6 - Prob. 6.23PCh. 6 - Prob. 6.24PCh. 6 - Prob. 6.25PCh. 6 - Prob. 6.26PCh. 6 - Prob. 6.27PCh. 6 - Prob. 6.28PCh. 6 - Prob. 6.29PCh. 6 - Prob. 6.30PCh. 6 - Prob. 6.31PCh. 6 - Prob. 6.32PCh. 6 - Prob. 6.33PCh. 6 - Prob. 6.34PCh. 6 - Prob. 6.35PCh. 6 - Prob. 6.36PCh. 6 - Prob. 6.37PCh. 6 - Prob. 6.38PCh. 6 - Prob. 6.39PCh. 6 - Prob. 6.40PCh. 6 - Prob. 6.41PCh. 6 - Prob. 6.42PCh. 6 - Prob. 6.43PCh. 6 - Prob. 6.44PCh. 6 - Prob. 6.45PCh. 6 - Prob. 6.46PCh. 6 - Prob. 6.47PCh. 6 - Prob. 6.48PCh. 6 - Prob. 6.49PCh. 6 - Prob. 6.50PCh. 6 - Prob. 6.51PCh. 6 - Prob. 6.52PCh. 6 - Prob. 6.53PCh. 6 - Prob. 6.54PCh. 6 - Prob. 6.55PCh. 6 - Prob. 6.56PCh. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - Prob. 6.59PCh. 6 - Prob. 6.60PCh. 6 - Prob. 6.61PCh. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - Prob. 6.64PCh. 6 - Prob. 6.65PCh. 6 - Prob. 6.66PCh. 6 - Prob. 6.67PCh. 6 - Prob. 6.68PCh. 6 - Prob. 6.69PCh. 6 - Prob. 6.70PCh. 6 - Prob. 6.71PCh. 6 - Prob. 6.72PCh. 6 - Prob. 6.73PCh. 6 - Prob. 6.74PCh. 6 - Prob. 6.75PCh. 6 - Prob. 6.76PCh. 6 - Prob. 6.77PCh. 6 - Prob. 6.78PCh. 6 - Prob. 6.79PCh. 6 - Prob. 6.80PCh. 6 - Prob. 6.81PCh. 6 - Prob. 6.82PCh. 6 - Prob. 6.83PCh. 6 - Prob. 6.84PCh. 6 - Prob. 6.1PPCh. 6 - Prob. 6.2PP
Knowledge Booster
Similar questions
- Observing a deterministic queue in 3 hours, suppose vehicles arrive at a rate of 500 vph for the first hour and 150 vph for the second and third hours. The service rate is 150 vph for the first two hours. The server can discharge 500 vehicles for the last hour. (a) What is the queue length after 30 minutes? [4 pts] (b) What is the maximum queue length? [4 pts] (c) When does the maximum queue happen? [4 pts] (d) What is the total delay? [4 pts] (e) Describe how the queue grows and discharges in this queuing process. [4 pts]arrow_forwardPlease explain step by step and show the formula usedarrow_forwardFind the increase of pressure at points A and B due to a loading q=400 kPa placed on the givenfoundation.arrow_forward
- The 4-story building has a floor dead load D = 80 psf, floor live load , L = 100 psf, roof dead load Dr = 40 psf, roof live load Lr = 60 psf, and snow load S = 50 psf. The length of columns is 18 ft and the column ends are pins (Lx = Ly = 18 ft). 1) Determine Pu on interior columns B2-4 and B2-1 2) Use Table 4-1a (pg 4-12 to 4-24) in AISC to select the lightest W shapes for these columns 3) Use Table 4-4 (pg 4-69 to 4-83) in AISC to select lightest square HSS shape for the columns.arrow_forward1:08 Il LTE Individual Assignment CEQ 31... CIVIL ENGINEERING ROANTICLO (Earthworks Quantities) (Due Date: Friday, 28/03/2025) Done Thumbi Irrigation Scheme in Mzimba district is under threat of flooding. In order to mitigate against the problem, authorities have decided to construct a flood protection bund (Dyke). Figure 1 is a cross section of a 300m long proposed dyke; together with its foundation (key). Survey data for the proposed site of the dyke are presented in Table 1. Table 2 provides swelling and shrinkage factors for the fill material that has been proposed. The dyke dimensions that are given are for a compacted fill. (1) Assume you are in the design office, use both the Simpson Rule and Trapezoidal Rule to compute the total volume of earthworks required. (Assume both the dyke and the key will use the same material). (2) If you are a Contractor, how many days will it take to finish hauling the computed earthworks using 3 tippers of 12m³ each? Make appropriate assumptions.…arrow_forwardThumbi Irrigation Scheme in Mzimba district is under threat of flooding. In order to mitigate against the problem, authorities have decided to construct a flood protection bund (Dyke). Figure 1 is a cross section of a 300m long proposed dyke; together with its foundation (key). Survey data for the proposed site of the dyke are presented in Table 1. Table 2 provides swelling and shrinkage factors for the fill material that has been proposed. The dyke dimensions that are given are for a compacted fill. (1) Assume you are in the design office, use both the Simpson Rule and Trapezoidal Rule to compute the total volume of earthworks required. (Assume both the dyke and the key will use the same material). (2) If you are a Contractor, how many days will it take to finish hauling the computed earthworks using 3 tippers of 12m³ each? Make appropriate assumptions. DIKE CROSS SECTION OGL KEY (FOUNDATION) 2m 1m 2m 8m Figure 1: Cross section of Dyke and its foundation 1.5m from highest OGL 0.5m…arrow_forward
- this is from CE-192arrow_forwardThe head-vs-capacity curves for two centrifugal pumps A and B are shown below: Which of the following is a correct statement at a flow rate of 600 ft3/min? Assuming a pump efficiency of 80%. Head [ft] 50 45 40 35- 30 25 20 15 10 5. 0 0 Pump B Pump A 100 200 300 400 500 600 700 800 900 1000arrow_forwardSolve for reactions and shear and moment diagram (base the answer on the 2nd figure). Hand Calculation 2. Note: Assume bottom left support as roller, bottom right support as pinned 4 kN/m 3 kN/m 8m 4m 2marrow_forward
- Your client wants to build a WTP that has a withdraw of 440 MGD. What is the exceedance probability in percentage? Average Monthly Minimum Flow of Record Month (MGD) Jan-73 322 Feb-73 280 Mar-73 335 Apr-73 374 May-73 440 Mar-74 313 Apr-74 375 May-74 560 Jun-74 380 Jul-74 445 Aug-74 323 Sep-74 411 Oct-74 541 Nov-74 510 Jan-75 261 Feb-75 271 May-75 312 Jun-75 314 351 Jul-75 Aug-75 332arrow_forwardIf a second 12.25" pump was added in parallel what would be the NPSHr be while both pumps are running? HEAD (Feet) 250- 200- Pump Series: VSX-VSC 10x12x13-1/2A 1780 RPM 13.5" 60% 70% -75% 80% 83% -85.5%- 150- 12.25" 100- 50 50- 10" 0- 2,000 NPSHr 83%. 80% 300HP- -75% 250HP 200HP 70% 150HP 125HP 100HP NPSHr(ft) 0 4,000 6,000 8,000 Capacity (GPM) 80 90 8arrow_forwardSolve for reactions and shear and moment diagram (base the answer on the 2nd figure) 1. Note: Assume bottom support as pinned 14 kN/m 16 kN 6m 5m 3m- 6marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning


Structural Analysis (10th Edition)
Civil Engineering
ISBN:9780134610672
Author:Russell C. Hibbeler
Publisher:PEARSON

Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning

Fundamentals of Structural Analysis
Civil Engineering
ISBN:9780073398006
Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel Lanning
Publisher:McGraw-Hill Education


Traffic and Highway Engineering
Civil Engineering
ISBN:9781305156241
Author:Garber, Nicholas J.
Publisher:Cengage Learning