Concept explainers
Each throw of an unfair die lands on each of the odd numbers 1, 3, 5 with
a. Find C.
b. Suppose that the die is tossed. Let X equal 1 if the result is an even number, and let it be 0 otherwise. Also, let Y equal 1 if the result is a number greater than three and let it be 0 otherwise. Find the joint probability mass
c. Find the probability that each of the six outcomes occurs exactly twice.
d. Find the probability that 4 of the outcomes are either one or two, 4 are either three or four, and 4 are either five or six.
e. Find the probability that at least 8 of the tosses land on even numbers.
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
A First Course In Probability, Global Edition
- Please solve the following Statistics and Probability Problem (show all work) : The probability that a patient recovers from a rare blood disease is 0.4 and 10 people are known to havecontracted this disease. Let X denote the random variable which denotes the number of patient who survivefrom the disease.1. Plot the probability mass function (pmf) of X.2. Plot the cumulative distribution function (cdf) of X.3. What is the probability that at least 8 survive, i.e., P {X ≥ 8}?4. What is the probability that 3 to 8 survive, i.e., P {3 ≤ X ≤ 8}?arrow_forwardPlease solve the following Probability and Statistics problem (show all work and double check solution is correct): Suppose that a die is rolled twice. What are the possible values that the following random variables can take1. the maximum value to appear in the two rolls;2. the value of the first roll minus the value of the second roll?3. Calculate the probabilities associated with the above two random variables?arrow_forwardPlease solve the following statistics and probability problem (show all work) : This problem is to show that determining if two events are independent is not always obvious.1. Consider a family of 3 children. Consider the following two events. A is the event that the familyhas children of both sexes and B is the event that there is at most one girl. Are events A and Bindependent?2. What is the answer in a family with 4 children?arrow_forward
- Please solve the following Probability and Statistics problems: (show all work) Suppose that a die is rolled twice. What are the possible values that the following random variables can take1. the maximum value to appear in the two rolls;2. the value of the first roll minus the value of the second roll?3. Calculate the probabilities associated with the above two random variables?arrow_forwardPlease solve the following Statistics and Probability Problem (show all work) : The probability that a patient recovers from a rare blood disease is 0.4 and 10 people are known to havecontracted this disease. Let X denote the random variable which denotes the number of patient who survivefrom the disease.1. Plot the probability mass function (pmf) of X.2. Plot the cumulative distribution function (cdf) of X.3. What is the probability that at least 8 survive, i.e., P {X ≥ 8}?4. What is the probability that 3 to 8 survive, i.e., P {3 ≤ X ≤ 8}?arrow_forwardPlease solve the following Probability and Statistics problem (please double check solution and provide explanation): A binary communication channel carries data as one of two types of signals denoted by 0 and 1. Owing tonoise, a transmitted 0 is sometimes received as a 1 and a transmitted 1 is sometimes received as a 0. For agiven channel, assume a probability of 0.94 that a transmitted 0 is correctly received as a 0 and a probability0.91 that a transmitted 1 is received as a 1. Further assume a probability of 0.45 of transmitting a 0. If asignal is sent, determine 1. Probability that a 1 is received2. Probability that a 0 is received3. Probability that a 1 was transmitted given that a 1 was received4. Probability that a 0 was transmitted given that a 0 was received5. Probability of an errorarrow_forward
- 3. A basket contains 2 orange, 3 white, 4 yellow, 5 pink, and 6 purple flowers. If a flowerarrow_forwardOne deck of cards is made of 4 suits (Spade, Diamond, Heart, Club) and 13 cards (A -> K), totaling 52 cards. A flush is a combination of 5 cards with the same suit. e.g. 3d 5d 9d Jd Kd A straight flush is a combination of 5 cards with the same suit, but also connected to each other. (e.g. highest straight flush is 10s Js Qs Ks As, the lowest straight flush is Ah, 2h, 3h, 4h, 5h) A straight flush is not considered a flush. Question 2 of 4 Draw random 5 cards (in one action) from the 52 cards deck, and calculate the probability of a flush. Provide the formula you used.arrow_forwardGame: dropping marbles from a 100-floor tower, given unlimited amount of identical marbles. if marble breaks when dropped from level X -> it breaks from all levels higher than X if marble doesn't break when dropped from level Y -> no marbles will break when dropped from level lower than Y Goal of Game: Find the highest level, from which the marbles doesn't break. Please design a testing plan to minimize the worst-case number-of-tests required to find the answer, with the constraint you can only break max 2 marbles. What is the minimum number of tests required? Explain your testing plan and how you arrived at this number.arrow_forward
- Q11. A president and a treasurer are to be chosen from a student club consisting of 50 people. How many different choices of officers are possible if (a) there are no restrictions (b) A will serve only if he is president (c) B and C will serve together or not at allarrow_forwardQ9. If A and B are two events, prove that P(ANB) ≥ 1 − P(Ā) – P(B). [Note: This is a simplified version of the Bonferroni inequality.] -arrow_forwardQ7. A business office orders paper supplies from one of three vendors, V₁, V2, or V3. Orders are to be placed on two successive days, one order per day. Thus, (V2, V3) might denote that vendor V2 gets the order on the first day and vendor V3 gets the order on the second day. (a) List the sample points in this experiment of ordering paper on two successive days. (b) Assume the vendors are selected at random each day and assign a probability to each sample point. (c) Let A denote the event that the same vendor gets both orders and B the event that V2 gets at least one order. Find P(A), P(B), P(AUB), and P(An B) by summing the probabilities of the sample points in these events.arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningElementary Geometry for College StudentsGeometryISBN:9781285195698Author:Daniel C. Alexander, Geralyn M. KoeberleinPublisher:Cengage Learning