A First Course In Probability, Global Edition
10th Edition
ISBN: 9781292269207
Author: Ross, Sheldon
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 6.18TE
To determine
To prove: the given equation with the help of given information.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Let X and Y denote two random variables. Which of the following can be used to compute Var(X)?
A. E[Var(X|Y)] + Var(Var(X|Y))
B. E[E[X|Y]] + Var(Var(X|Y))
C. E[Var(X|Y)] + Var(E[X|Y])
D. Var(E[X|Y]) + Var(Var(X|Y))
ii) Let X be a random variable taking three values:
P(X= a₁) = P₁,
P(X=a₂) = P2,
P(X=a3) = P3,
where p₁ + P2 + P3 = 1 and P₁, P2, P3 € (0, 1). Let A = {X = a₁} and G = {N, 0, A, Ac}. Prove
that
E (X³|G) = a³¹₁ + ª²P² + a²P3,
P2 + P3
1A.
Let X and Y be independent discrete random variables and suppose that
X+Y=2. Show that X and Y are constant random variables.
Chapter 6 Solutions
A First Course In Probability, Global Edition
Ch. 6 - Two fair dice are rolled. Find the joint...Ch. 6 - Suppose that 3 balls are chosen without...Ch. 6 - In Problem 8 t, suppose that the white balls are...Ch. 6 - Repeat Problem 6.2 when the ball selected is...Ch. 6 - Repeat Problem 6.3a when the ball selected is...Ch. 6 - The severity of a certain cancer is designated by...Ch. 6 - Consider a sequence of independent Bernoulli...Ch. 6 - Prob. 6.8PCh. 6 - The joint probability density function of X and Y...Ch. 6 - Prob. 6.10P
Ch. 6 - In Example Id, verify that f(x,y)=2exe2y,0x,0y, is...Ch. 6 - The number of people who enter a drugstore in a...Ch. 6 - A man and a woman agree to meet at a certain...Ch. 6 - An ambulance travels back and forth at a constant...Ch. 6 - The random vector (X,Y) is said to be uniformly...Ch. 6 - Suppose that n points are independently chosen at...Ch. 6 - Prob. 6.17PCh. 6 - Let X1 and X2 be independent binomial random...Ch. 6 - Show that f(x,y)=1x, 0yx1 is a joint density...Ch. 6 - Prob. 6.20PCh. 6 - Let f(x,y)=24xy0x1,0y1,0x+y1 and let it equal 0...Ch. 6 - The joint density function of X and Y is...Ch. 6 - Prob. 6.23PCh. 6 - Consider independent trials, each of which results...Ch. 6 - Suppose that 106 people arrive at a service...Ch. 6 - Prob. 6.26PCh. 6 - Prob. 6.27PCh. 6 - The time that it takes to service a car is an...Ch. 6 - The gross daily sales at a certain restaurant are...Ch. 6 - Jills bowling scores are approximately normally...Ch. 6 - According to the U.S. National Center for Health...Ch. 6 - Monthly sales are independent normal random...Ch. 6 - Let X1 and X2 be independent normal random...Ch. 6 - Prob. 6.34PCh. 6 - Teams 1, 2, 3, 4 are all scheduled to play each of...Ch. 6 - Let X1,...,X10 be independent with the same...Ch. 6 - The expected number of typographical errors on a...Ch. 6 - The monthly worldwide average number of airplane...Ch. 6 - In Problem 6.4, calculate the conditional...Ch. 6 - In Problem 6.3 calculate the conditional...Ch. 6 - Prob. 6.41PCh. 6 - Prob. 6.42PCh. 6 - Prob. 6.43PCh. 6 - The joint probability mass function of X and Y is...Ch. 6 - Prob. 6.45PCh. 6 - Prob. 6.46PCh. 6 - An insurance company supposes that each person has...Ch. 6 - If X1,X2,X3 are independent random variables that...Ch. 6 - Prob. 6.49PCh. 6 - If 3 trucks break down at points randomly...Ch. 6 - Consider a sample of size 5 from a uniform...Ch. 6 - Prob. 6.52PCh. 6 - Let X(1),X(2),...,X(n) be the order statistics of...Ch. 6 - Let Z1 and Z2 be independent standard normal...Ch. 6 - Derive the distribution of the range of a sample...Ch. 6 - Let X and Y denote the coordinates of a point...Ch. 6 - Prob. 6.57PCh. 6 - Prob. 6.58PCh. 6 - Prob. 6.59PCh. 6 - Prob. 6.60PCh. 6 - Repeat Problem 6.60 when X and Y are independent...Ch. 6 - Prob. 6.62PCh. 6 - Prob. 6.63PCh. 6 - In Example 8b, let Yk+1=n+1i=1kYi. Show that...Ch. 6 - Consider an urn containing n balls numbered 1.. .....Ch. 6 - Suppose X,Y have a joint distribution function...Ch. 6 - Prob. 6.2TECh. 6 - Prob. 6.3TECh. 6 - Solve Buffons needle problem when LD.Ch. 6 - If X and Y are independent continuous positive...Ch. 6 - Prob. 6.6TECh. 6 - Prob. 6.7TECh. 6 - Let X and Y be independent continuous random...Ch. 6 - Let X1,...,Xn be independent exponential random...Ch. 6 - The lifetimes of batteries are independent...Ch. 6 - Prob. 6.11TECh. 6 - Show that the jointly continuous (discrete) random...Ch. 6 - In Example 5e t, we computed the conditional...Ch. 6 - Suppose that X and Y are independent geometric...Ch. 6 - Consider a sequence of independent trials, with...Ch. 6 - If X and Y are independent binomial random...Ch. 6 - Suppose that Xi,i=1,2,3 are independent Poisson...Ch. 6 - Prob. 6.18TECh. 6 - Let X1,X2,X3 be independent and identically...Ch. 6 - Prob. 6.20TECh. 6 - Suppose that W, the amount of moisture in the air...Ch. 6 - Let W be a gamma random variable with parameters...Ch. 6 - A rectangular array of mn numbers arranged in n...Ch. 6 - If X is exponential with rate , find...Ch. 6 - Suppose thatF(x) is a cumulative distribution...Ch. 6 - Show that if n people are distributed at random...Ch. 6 - Suppose that X1,...,Xn are independent exponential...Ch. 6 - Establish Equation (6.2) by differentiating...Ch. 6 - Show that the median of a sample of size 2n+1 from...Ch. 6 - Prob. 6.30TECh. 6 - Compute the density of the range of a sample of...Ch. 6 - Let X(1)X(2)...X(n) be the ordered values of n...Ch. 6 - Let X1,...,Xn be a set of independent and...Ch. 6 - Let X1,....Xn, be independent and identically...Ch. 6 - Prob. 6.35TECh. 6 - Prob. 6.36TECh. 6 - Suppose that (X,Y) has a bivariate normal...Ch. 6 - Suppose that X has a beta distribution with...Ch. 6 - 6.39. Consider an experiment with n possible...Ch. 6 - Prob. 6.40TECh. 6 - Prob. 6.41TECh. 6 - Each throw of an unfair die lands on each of the...Ch. 6 - The joint probability mass function of the random...Ch. 6 - Prob. 6.3STPECh. 6 - Let r=r1+...+rk, where all ri are positive...Ch. 6 - Suppose that X, Y, and Z are independent random...Ch. 6 - Let X and Y be continuous random variables with...Ch. 6 - The joint density function of X and Y...Ch. 6 - Consider two components and three types of shocks....Ch. 6 - Consider a directory of classified advertisements...Ch. 6 - The random parts of the algorithm in Self-Test...Ch. 6 - Prob. 6.11STPECh. 6 - The accompanying dartboard is a square whose sides...Ch. 6 - A model proposed for NBA basketball supposes that...Ch. 6 - Let N be a geometric random variable with...Ch. 6 - Prob. 6.15STPECh. 6 - You and three other people are to place bids for...Ch. 6 - Find the probability that X1,X2,...,Xn is a...Ch. 6 - 6.18. Let 4VH and Y, be independent random...Ch. 6 - Let Z1,Z2.....Zn be independent standard normal...Ch. 6 - Let X1,X2,... be a sequence of independent and...Ch. 6 - Prove the identity P{Xs,Yt}=P{Xs}+P{Yt}+P{Xs,Yt}1...Ch. 6 - In Example 1c, find P(Xr=i,Ys=j) when ji.Ch. 6 - A Pareto random variable X with parameters a0,0...Ch. 6 - Prob. 6.24STPECh. 6 - Prob. 6.25STPECh. 6 - Let X1,...,Xn, be independent nonnegative integer...
Knowledge Booster
Similar questions
- Assume that the probability that an airplane engine will fail during a torture test is 12and that the aircraft in question has 4 engines. Construct a sample space for the torture test. Use S for survive and F for fail.arrow_forwardConsumer Preference In a population of 100,000 consumers, there are 20,000 users of Brand A, 30,000 users of Brand B, and 50,000 who use neither brand. During any month, a Brand A user has a 20 probability of switching to Brand B and a 5 of not using either brand. A Brand B user has a 15 probability of switching to Brand A and a 10 probability of not using either brand. A nonuser has a 10 probability of purchasing Brand A and a 15 probability of purchasing Brand B. How many people will be in each group a in 1 month, b in 2 months, and c in 18 months?arrow_forwardWhat is the definition of independence for two discrete random variables X and Y? X and Y are independent if and only if P(X= x) = P(Y= y) for all x and y. OX and Y are independent if and only if P(X = x Y = y) = P(X = x)*P(Y= y) for all x and y. X and Y are independent if and only if P(X= x | Y = y) = P(X = x) for all x and y. Previousarrow_forward
- Let X ∼ N (0, 1) and Y ∼ Ber(p) be two independent random variables. find the law of S = X + Yarrow_forwardAn ordinary (fair) coin is tossed 3 times. Outcomes are thus triples of "heads" (h) and "tails" (t) which we write hth, ttt, etc. For each outcome, let R be the random variable counting the number of tails in each outcome. For example, if the outcome is tth, then R (tth) = 2. Suppose that the random variable X is defined in terms of R as follows: X=R – 3R-4. The values of X are given in the table below. Outcome hth|hht|hhh tth | thh htt tht ttt Value of X -6 -6 -4 -6 -6 -6 -6 -4 Calculate the values of the probability distribution function of X, i.e. the function py. First, fill in the first row with the values of X. Then fill in the appropriate probabilities in the second row. Value X of X || ? Px (x) O Oarrow_forwardLet X be a random variable such that X B( 12,8/9).arrow_forward
- Let X and Y be dependent random variables. Which statements are always true? Select one or more: a. None of the below. b. E(XY)≠E(X)E(Y) c. cov(X,Y)=1 d. Var(X+Y)=Var(X)+Var(Y) e. E(X+Y)=E(X)+E(Y)arrow_forward2. Let X and Y be random variables. Prove that |px,x| = 1 if and only if Y = a +bX for some a, b E R.arrow_forwardLet X and Y be independent random variables. Which statements are true? Select one or more: a. None of the below b. E(X+Y)=E(X)+E(Y) c. Var(X+Y)=Var(X)+Var(Y) d. cov(X,Y)=1 e. E(XY)=E(X)E(Y)arrow_forward
- An ordinary (fair) coin is tossed 3 times. Outcomes are thus triples of “heads” (h) and “tails” (t) which we write hth, ttt, etc. for each outcome let R be the random variable counting the number of heads in each outcome. For example, if the outcome is hhh, then R (hhh)=3. Suppose that the random variable X is defined in terms of R as follows: X= 2R-2R^2-3. The values of X are given in the table below.arrow_forwardLet X and Y be nonnegative integer-valued discrete random variables such that if 0 ≤ m ≤ n are integers, otherwise. P(X = m, Y =n) - [0.2-¹ lo -m-n (a) Find the value of the constant C. (b) Find the variance of X.arrow_forwardAn ordinary (fair) coin is tossed 3 times. Outcomes are thus triples of "heads" (h) and "tails" (t) which we write hth, ttt, etc. For each outcome, let R be the random variable counting the number of heads in each outcome. For example, if the outcome is ttt, then R(ttt) = 0. Suppose that the random variable X is defined in terms of R as follows: X= 2R- 4R-4. The values of X are given in the table below. Outcome ttt tth hht thh tht hhh htthth Value of X -4 -6 -4 -4 -6 -4 Calculate the values of the probability distribution function of X, i.e. the function py. First, fill in the first row with the values of X. Then fill in the appropriate probabilities in the second row. Value x of X Px (x) oloarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning