Each throw of an unfair die lands on each of the odd numbers 1, 3, 5 with probability C and on each of the even numbers with probability 2 a. Find C. b. Suppose that the die is tossed. Let X equal 1 if the result is an even number, and let it be 0 otherwise. Also, let Y equal 1 if the result is a number greater than three and let it be 0 otherwise. Find the joint probability mass function of X and Y. Suppose now that 12 independent tosses of the die are made. c. Find the probability that each of the six outcomes occurs exactly twice. d. Find the probability that 4 of the outcomes are either one or two, 4 are either three or four, and 4 are either five or six. e. Find the probability that at least 8 of the tosses land on even numbers.
Each throw of an unfair die lands on each of the odd numbers 1, 3, 5 with probability C and on each of the even numbers with probability 2 a. Find C. b. Suppose that the die is tossed. Let X equal 1 if the result is an even number, and let it be 0 otherwise. Also, let Y equal 1 if the result is a number greater than three and let it be 0 otherwise. Find the joint probability mass function of X and Y. Suppose now that 12 independent tosses of the die are made. c. Find the probability that each of the six outcomes occurs exactly twice. d. Find the probability that 4 of the outcomes are either one or two, 4 are either three or four, and 4 are either five or six. e. Find the probability that at least 8 of the tosses land on even numbers.
Solution Summary: The author explains that the sum of probabilities must be equal to 1. The joint probability mass function of two discrete random variables X and
Each throw of an unfair die lands on each of the odd numbers 1, 3, 5 with probability C and on each of the even numbers with probability 2
a. Find C.
b. Suppose that the die is tossed. Let X equal 1 if the result is an even number, and let it be 0 otherwise. Also, let Y equal 1 if the result is a number greater than three and let it be 0 otherwise. Find the joint probability mass function of X and Y. Suppose now that 12 independent tosses of the die are made.
c. Find the probability that each of the six outcomes occurs exactly twice.
d. Find the probability that 4 of the outcomes are either one or two, 4 are either three or four, and 4 are either five or six.
e. Find the probability that at least 8 of the tosses land on even numbers.
Q1. A group of five applicants for a pair of identical jobs consists of three men and two
women. The employer is to select two of the five applicants for the jobs. Let S
denote the set of all possible outcomes for the employer's selection. Let A denote
the subset of outcomes corresponding to the selection of two men and B the subset
corresponding to the selection of at least one woman. List the outcomes in A, B,
AUB, AN B, and An B. (Denote the different men and women by M₁, M2, M3
and W₁, W2, respectively.)
Q3 (8 points)
Q3. A survey classified a large number of adults according to whether they were diag-
nosed as needing eyeglasses to correct their reading vision and whether they use
eyeglasses when reading. The proportions falling into the four resulting categories
are given in the following table:
Use Eyeglasses for Reading
Needs glasses Yes
No
Yes
0.44
0.14
No
0.02
0.40
If a single adult is selected from the large group, find the probabilities of the events
defined below. The adult
(a) needs glasses.
(b) needs glasses but does not use them.
(c) uses glasses whether the glasses are needed or not.
4. (i) Let a discrete sample space be given by
N = {W1, W2, W3, W4},
and let a probability measure P on be given by
P(w1) = 0.2, P(w2) = 0.2, P(w3) = 0.5, P(wa) = 0.1.
Consider the random variables X1, X2 → R defined by
X₁(w1) = 1, X₁(w2) = 2,
X2(w1) = 2, X2 (w2) = 2,
Find the joint distribution of X1, X2.
(ii)
X1(W3) = 1, X₁(w4) = 1,
X2(W3) = 1, X2(w4) = 2.
[4 Marks]
Let Y, Z be random variables on a probability space (, F, P).
Let the random vector (Y, Z) take on values in the set [0, 1] x [0,2] and let the
joint distribution of Y, Z on [0, 1] x [0,2] be given by
1
dPy,z (y, z) ==(y²z+yz2) dy dz.
harks 12 Find the distribution Py of the random variable Y.
[8 Marks]
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.