Principles of Foundation Engineering (MindTap Course List)
Principles of Foundation Engineering (MindTap Course List)
9th Edition
ISBN: 9781337705028
Author: Braja M. Das, Nagaratnam Sivakugan
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
100%
Book Icon
Chapter 6, Problem 6.1P

For the following cases, determine the allowable gross vertical load-bearing capacity of the foundation. Use Terzaghi’s equation and assume general shear failure in soil. Use FS = 4.

Parameters for Problem 6.1

Chapter 6, Problem 6.1P, For the following cases, determine the allowable gross vertical load-bearing capacity of the

a)

Expert Solution
Check Mark
To determine

Find the allowable gross vertical load-bearing capacity of the continuous foundation.

Answer to Problem 6.1P

The allowable gross vertical load-bearing capacity of the continuous foundation is 5,195.45lb/ft2_.

Explanation of Solution

Given information;

The width (B) of the foundation is 3 ft.

The depth (Df) of the foundation is 3 ft.

The angle of friction ϕ of soil is 28°.

The cohesion c of the soil is 400lb/ft2.

The specific weight γ of soil is 110lb/ft3.

The factor of safety is (FS) is 4.0.

Calculation:

Refer Table (6.1), “Terzaghi’s bearing capacity factors” in the text book.

For ϕ=28°

Take the value of NC as 31.61.

Take the value of Nq as 17.81.

Take the value of Nγ as 13.70.

Determine the ultimate load bearing capacity qu of the foundation using the formula;

qu=cNC+qNq+12γBNγ=cNC+(γ×Df)Nq+12γBNγ=400×31.61+(110×3)17.81+12×110×3×13.70=20,781.8lb/ft2

Determine the allowable gross vertical load-bearing capacity qall using the formula;

qall=quFS=20,781.8lb/ft24=5,195.45lb/ft2

Hence, the allowable gross vertical load-bearing capacity qall of the continuous foundation is 5,195.45lb/ft2_.

b)

Expert Solution
Check Mark
To determine

Find the allowable gross vertical load-bearing capacity of the continuous foundation.

Answer to Problem 6.1P

The allowable gross vertical load-bearing capacity of the continuous foundation is 372.8kN/m2_.

Explanation of Solution

Given information;

The width (B) of the foundation is 1.5 m.

The depth (Df) of the foundation is 1.2 m.

The angle of friction ϕ of soil is 35°.

The cohesion c of the soil is zero.

The specific weight γ of soil is 17.8kN/m3.

The factor of safety is (FS) is 4.0.

Calculation:

Refer Table (6.1), “Terzaghi’s bearing capacity factors” in the text book.

For ϕ=35°

Take the value of NC as 57.75.

Take the value of Nq as 41.44.

Take the value of Nγ as 45.41.

Determine the ultimate load bearing capacity qu of the foundation using the formula;

qu=cNC+qNq+12γBNγ=cNC+(γ×Df)Nq+12γBNγ=0×57.75+(17.8×1.2)41.44+12×17.8×1.5×45.41=1,491.38kN/m2

Determine the allowable gross vertical load-bearing capacity qall using the formula;

qall=quFS=1,491.38kN/m24=372.8kN/m2

Hence, the allowable gross vertical load-bearing capacity qall of the foundation is 372.8kN/m2_.

c)

Expert Solution
Check Mark
To determine

Find the allowable gross vertical load-bearing capacity of the square foundation.

Answer to Problem 6.1P

The allowable gross vertical load-bearing capacity of the square foundation is 280.0kN/m2_.

Explanation of Solution

Given information;

The width (B) of the foundation is 3.0 m.

The depth (Df) of the foundation is 2.0 m.

The angle of friction ϕ of soil is 30°.

The cohesion c of the soil is zero.

The specific weight γ of soil is 16.5kN/m3.

The factor of safety is (FS) is 4.0.

Calculation:

Refer Table (6.1), “Terzaghi’s bearing capacity factors” in the text book.

For ϕ=30°

Take the value of NC as 37.16.

Take the value of Nq as 22.46.

Take the value of Nγ as 19.13.

Determine the ultimate load bearing capacity qu using the formula;

qu=1.3cNC+qNq+0.4γBNγ=1.3cNC+(γ×Df)Nq+0.4γBNγ=1.3(0)37.16+(16.5×2)22.46+0.4×16.5×3×19.13=1,119.95kN/m2

Determine the allowable gross vertical load-bearing capacity qall using the formula;

qall=quFS=1,119.95kN/m24280.0kN/m2

Hence, the allowable gross vertical load-bearing capacity qall of the square foundation is 280.0kN/m2_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
subject
In one of the construction projects, a bulldozer is used for a weekly rent of $150, with a work rate of 10 hours per day, 50 minutes per hour, and 6 days per week. If you know that the dimensions of the bulldozer blade are 3 lengths and 1 m height, the slope of the pushed soil is (1:1), its speed when loaded is 45 m/min and when returning is 80 m/min, and the time for loading, unloading, and changing is 0.35 minutes, the transported soil is sandy, weighing 1650 kg/m3 by Bank volume and 1300 kg/m3 by loose volume, the transport distance is 300 m. If you know that using a tractor shovel costs $0.5 per m3, ma a decision about choosing the economical equipment to use in the project.
/ An irrigation project requires digging and paving an irrigation canal with alength of (30 km) and a semi-circular section with a diameter of (8 m). The work mustmbe completed within one year, and in the event of delay, a fine delay of $200/day. You have two options for work: 1st Option: using standard equipment (excavators, graders and hand labor) had a cost of $10/m3, the job will be finish without delay. 2nd Option: Use a channel trimmer machine with the following specifications: Purchase price ($70,000), it can be sold after its economic life of (5 years) for ($30,000), its speed (10m/hr), engine diesel with (250 hp) and its work 48 minutes/hr, capacity of crankcase is (50 liters), the number of hours between changing the oil (100 hr), the maintenance cost is (80%) of its depreciation, the price of one liter of fuel ($0.5/liter) and of oil ($1/liter), the operators' wages ($15,000/year), annual operating hours (2000 hr), and the owner must pay taxes of 10% of the average value of…
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
CE 414 Lecture 02: LRFD Load Combinations (2021.01.22); Author: Gregory Michaelson;https://www.youtube.com/watch?v=6npEyQ-2T5w;License: Standard Youtube License