Since laboratory or field experiments are generally expensive and time consuming,
- a. Use the Osman et al. (2008) method [Eqs. (6.15) through (6.18)].
- b. Use the Gurtug and Sridharan (2004) method [Eqs. (6.13) and (6.14)].
- c. Use the Matteo et al. (2009) method [Eqs. (6.19) and (6.20)].
- d. Plot the calculated wopt against the experimental wopt, and the calculated γd(max) with the experimental γd(max). Draw a 45° line of equality on each plot.
- e. Comment on the predictive capabilities of various methods. What can you say about the inherent nature of empirical models?
(a)
Find the optimum moisture content and maximum dry unit weight using Osman et al. (2008) method.
Explanation of Solution
Calculation:
Determine the plasticity index PI using the relation.
Here, LL is the liquid limit for soil 1 and PL is the plastic limit for soil 1.
Substitute 17 % for LL and 16 % for PL.
Similarly, calculate the PI for remaining soils.
Determine the optimum moisture content for soil 1 using the relation.
Here, E is the compaction energy for soil 1.
Substitute
Similarly, calculate the optimum moisture content for remaining soils.
Determine the value of L using the relation.
Substitute
Determine the value of M using the relation.
Substitute
Determine the maximum dry unit weight of the soil 1 using the relation.
Substitute 23.78 for L, 0.387 for M, and 0.69 % for
Similarly, calculate the maximum dry unit weight for remaining soils.
Summarize the calculated values as in Table 1.
Soil |
LL (%) |
PL (%) |
PI (%) |
E |
(Exp) |
(Exp) |
| L | M |
|
1 | 17 | 16 | 1 | 2,700 | 8 | 20.72 | 0.69 | 23.782 | 0.387 | 23.51 |
600 | 10 | 19.62 | 0.93 | 21.984 | 0.277 | 21.73 | ||||
354 | 10 | 19.29 | 1.02 | 21.354 | 0.238 | 21.11 | ||||
2 | 68 | 21 | 47 | 2,700 | 20 | 16.00 | 32.26 | 23.782 | 0.387 | 11.30 |
600 | 28 | 13.80 | 43.92 | 21.984 | 0.277 | 9.82 | ||||
354 | 31 | 13.02 | 48.01 | 21.354 | 0.238 | 9.91 | ||||
3 | 56 | 14 | 42 | 2,700 | 15 | 18.25 | 28.82 | 23.782 | 0.387 | 12.63 |
1,300 | 16 | 17.50 | 33.89 | 22.908 | 0.333 | 11.61 | ||||
600 | 17 | 16.50 | 39.24 | 21.984 | 0.277 | 11.12 | ||||
275 | 19 | 15.75 | 44.65 | 21.052 | 0.220 | 11.23 | ||||
4 | 66 | 27 | 39 | 600 | 21 | 15.89 | 36.45 | 21.984 | 0.277 | 11.89 |
5 | 25 | 21 | 4 | 600 | 18 | 16.18 | 3.740 | 21.984 | 0.277 | 20.95 |
6 | 35 | 22 | 13 | 600 | 17 | 16.87 | 12.15 | 21.984 | 0.277 | 18.62 |
7 | 23 | 18 | 5 | 600 | 12 | 18.63 | 4.67 | 21.984 | 0.277 | 20.69 |
8 | 29 | 19 | 10 | 600 | 15 | 17.65 | 9.35 | 21.984 | 0.277 | 19.39 |
(b)
Find the optimum moisture content and maximum dry unit weight using Gurtug and Sridharan (2004) method.
Explanation of Solution
Calculation:
Determine the optimum moisture content for soil 1 using the relation.
Substitute
Determine the maximum dry unit weight of the soil 1 using the relation.
Substitute 10.34 % for
Similarly, calculate the maximum dry unit weight for remaining soils.
Summarize the calculated values as in Table 2.
Soil |
PL (%) |
E |
(Exp) |
(Exp) |
|
|
1 | 16 | 2,700 | 8 | 20.72 | 10.34 | 18.77 |
600 | 10 | 19.62 | 14.31 | 17.46 | ||
354 | 10 | 19.29 | 15.70 | 17.02 | ||
2 | 21 | 2,700 | 20 | 16.00 | 13.57 | 17.69 |
600 | 28 | 13.80 | 18.78 | 16.08 | ||
354 | 31 | 13.02 | 20.61 | 15.55 | ||
3 | 14 | 2,700 | 15 | 18.25 | 9.05 | 19.22 |
1,300 | 16 | 17.50 | 10.73 | 18.64 | ||
600 | 17 | 16.50 | 12.52 | 18.04 | ||
275 | 19 | 15.75 | 14.32 | 17.45 | ||
4 | 27 | 600 | 21 | 15.89 | 24.15 | 14.58 |
5 | 21 | 600 | 18 | 16.18 | 18.78 | 16.08 |
6 | 22 | 600 | 17 | 16.87 | 19.67 | 15.82 |
7 | 18 | 600 | 12 | 18.63 | 16.10 | 16.89 |
8 | 19 | 600 | 15 | 17.65 | 16.99 | 16.62 |
(c)
Find the optimum moisture content and maximum dry unit weight using Matteo et al. method.
Explanation of Solution
Calculation:
Determine the optimum moisture content for soil 1 using the relation.
Substitute 17 % LL and
Determine the maximum dry unit weight of the soil 1 using the relation.
Substitute 6.94 % for
Similarly, calculate the maximum dry unit weight for remaining soils.
Summarize the calculated values as in Table 3.
Soil |
Specific gravity |
PI (%) |
(Exp) |
(Exp) |
|
|
1 | 2.67 | 1 | 8 | 20.72 | 6.94 | 20.37 |
10 | 19.62 | 6.94 | 20.37 | |||
10 | 19.29 | 6.94 | 20.37 | |||
2 | 2.73 | 47 | 20 | 16.00 | 19.44 | 16.60 |
28 | 13.80 | 19.44 | 16.60 | |||
31 | 13.02 | 19.44 | 16.60 | |||
3 | 2.68 | 42 | 15 | 18.25 | 17.56 | 17.11 |
16 | 17.50 | 17.56 | 17.11 | |||
17 | 16.50 | 17.56 | 17.11 | |||
19 | 15.75 | 17.56 | 17.11 | |||
4 | 2.68 | 39 | 21 | 15.89 | 20.31 | 16.25 |
5 | 2.67 | 4 | 18 | 16.18 | 9.16 | 19.52 |
6 | 2.71 | 13 | 17 | 16.87 | 11.36 | 18.97 |
7 | 2.69 | 5 | 12 | 18.63 | 8.41 | 20.25 |
8 | 2.72 | 10 | 15 | 17.65 | 9.67 | 19.82 |
(d)
Plot the graph between the calculated
Explanation of Solution
Refer Table 1, 2, and 3.
Draw the graph between the calculated
Draw the graph between calculated
(e)
Comment on the predictive capabilities of various methods and comment about the inherent nature of empirical models.
Explanation of Solution
Prediction of optimum moisture content:
Refer Figure (1), several data points are closely packed around the
Prediction of maximum dry unit weight:
Most data points for all models show good covenant between the calculated and the experimental values.
The empirical models are often limited to the materials, test methods and environmental conditions under which the experiments were conducted and the developed models. For new materials and conditions, the predicted values may not be reliable.
Want to see more full solutions like this?
Chapter 6 Solutions
EBK PRINCIPLES OF GEOTECHNICAL ENGINEER
- 2.20 A driver is traveling at 90 mi/h down a 3% grade on good, wet pavement. An accident investigation team noted that braking skid marks started 410 ft before a parked car was hit at an estimated 45 mi/h. Ignoring air resistance, and using theoretical stopping distance, what was the braking efficiency of the car?arrow_forward5.2 Assume that you are an observer standing at a point along a three-lane roadway. All vehicles in lane 1 are traveling at 30 mi/h, all vehicles in lane 2 are traveling at 45 mi/h, and all vehicles in lane 3 are traveling at 60 mi/h. There is also a constant spacing of 0.5 mile between vehicles. If you collect spot speed data for all vehicles as they cross your observation point, for 30 minutes, what will be the time-mean speed and space-mean speed for this traffic stream?arrow_forwardThere are 20 cars traveling at constant speeds on a 1 mile long ring track and the cars can pass each other freely. On the track 25% of the cars are traveling at 20 mph, 50% of the cars are traveling 10 mph, and the remaining 25% of the cars are traveling at an unknown speed. It was known that the space mean speed of all the cars on the track is 20 mph. (a) What is the speed that the remaining 25% of cars are traveling at? (b) If an observer standing on the side of the track counted the number and measured the speed of all cars that passed her for one hour, what is the time-mean speed of all the cars the observer counted? (c) What is the flow rate measured by the observer? (d) What is the car density on the track? Does density times space mean speed equal flow rate?arrow_forward
- e t a S t 1 d ? f a V f 1 2.20 A driver is traveling at 90 mi/h down a 3% grade on good, wet pavement. An accident investigation team noted that braking skid marks started 410 ft before a parked car was hit at an estimated 45 mi/h. Ignoring air resistance, and using theoretical stopping distance, what was the braking efficiency of the car? 2.21 A small truck is to be driven down a 4% grade at 70 mi/h. The coefficient of road adhesion is 0.95, and it is known that the braking efficiency is 80% when the truck is empty and decreases by one percentage point for every 100 lb of cargo added. Ignoring aerodynamic resistance, if the driver wants the truck to be able to achieve a minimum theoretical stopping distance of 275 ft from the point of brake application, what is the maximum amount of cargo (in pounds) that can be carried?arrow_forward2.32 A driver is traveling at 52 mi/h on a wet road. An object is spotted on the road 415 ft ahead and the driver is able to come to a stop just before hitting the object. Assuming standard perception/reaction time and practical stopping distance, determine the grade of the road.arrow_forwardThe pumping system shown below is supposed to provide at least 250 GPM of water to the drinking trough. The outlet of the drawn tubing at the drinking water trough discharges to the atmosphere as a water jet. The outlet of the pipe is approximately 12 ft higher than the water surface of reservoir. Expected water temperature is 70ᵒF. Your objective is to select a pump and check its performance for the specified system. Your tasks include: 1. Determine total dynamic head (TDH) operating against the pump for the design flow rate. Neglect minor losses. Note that H-W is not appropriate for this water temperature, and you need to use D-W. 2. Use the TDH and Qdesign to approach a pump vendor. She provides you the attached four pump performance curves for your consideration. 3. Select the appropriate pump based on the fit of the selection point on the pump performance curves. 4. Develop the system curve. 5. Determine the pump operating point and record the system operating conditions…arrow_forward
- $$ 5.1 Assume that you are observing traffic in a single lane of a highway at a specific location. You measure the average headway and average spacing of passing vehicles as 3.2 seconds and 165 ft, respectively. Calculate the flow, average speed, and density of the traffic stream in this lane. 5.2 Assume that you are an observer standing at a point along a three-lane roadway. All vehicles in lane 1 are traveling at 30 mi/h, all vehicles in lane 2 are traveling at 45 mi/h, and all vehicles in lane 3 are traveling at 60 mi/h. There is also a constant spacing of 0.5 mile between vehicles. If you collect spot speed data for all vehicles as they cross your observation point, for 30 minutes, what will be the time-mean speed and space-mean speed for this traffic stream?arrow_forwardDetermine the direction of F2 such that the resultant force of adding F1 and F2 acts along the positive yaxis.arrow_forward3 decimal places answer don't use aiarrow_forward
- 4.5 in 2.5 in. D B1 0 140 lb 5 in. 40° 20 lb Replace the forces acting at A and D with an equivalent force-couple system acting at point B. Force B = acting at a angle measured from the Submit part Couple M= in the direction. answered Submit partarrow_forward4.5 in. 2.5 in. 140 lb B Only handwritten 5 in. 40° 120 lb Replace the forces acting at A and D with an equivalent force-couple system acting at point B. Force B = acting at a angle measured from the Submit part Couple M= in the direction. Unansweredarrow_forward1.) Calculate the internal forces and moments (shear force, bending moment, and axial force if applicable) at point C on the beam shown below. Clearly show all your steps, including the calculation of support reactions, and the determination of internal loadings at point C. (Ans: Nc = 0 kN, Vc = -6.53 kN, Mc = 71.68 kN.m) 40 pts. 7.5 kN A H 6.0 kN/m 4.0 kN 4.0 C B 2.0 3.0 7.0 1.5 2.0arrow_forward
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningConstruction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage Learning
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning