An excess of zinc metal is added to 50.0 mL of a 0.100 M AgNO3 solution in a constant-pressure calorimeter like the one pictured in Figure 6.9. As a result of the reaction
the temperature rises from 19.25°C to 22.17°C. If the heat capacity of the calorimeter is 98.6 J/°C, calculate the enthalpy change for the above reaction on a molar basis. Assume that the density and specific heat of the solution are the same as those for water, and ignore the specific heats of the metals.
Interpretation: The change in enthalpy on molar basis has to be calculated.
Concept Introduction:
Specific heat can be defined as quantity of heat required to raise the temperature of
Where
c= Specific heat
The unit of specific heat is
Answer to Problem 6.115QP
The change in standard enthalpy is
Explanation of Solution
Record the given data
Volume and Molarity of Silver Nitrate =
Initial temperature =
Final temperature =
Heat capacity of calorimeter =
To calculate the heat produced
Heat produced by the reaction =
=
Heat produced by the reaction =
To calculate the heat produced on molar basis
Moles of Silver =
On molar basis, heat produced
=
Heat produced =
To calculate the enthalpy of the reaction
The equation shows 2 moles of Silver, therefore the heat produced =
Heat is produced by the reaction, then,
The enthalpy change of the reaction was calculated using the values of heat produced by moles of Silver. The heat produced by the reaction was found to be
Want to see more full solutions like this?
Chapter 6 Solutions
Chemistry
Additional Science Textbook Solutions
Physics for Scientists and Engineers
Loose Leaf For Integrated Principles Of Zoology
Organic Chemistry
Fundamentals Of Thermodynamics
Biology: Life on Earth with Physiology (11th Edition)
General, Organic, and Biological Chemistry - 4th edition
- Don't used Ai solutionarrow_forwardLet's see if you caught the essentials of the animation. What is the valence value of carbon? a) 4 b) 2 c) 8 d) 6arrow_forwardA laser emits a line at 632.8 nm. If the cavity is 12 cm long, how many modes oscillate in the cavity? How long does it take for the radiation to travel the entire cavity? What is the frequency difference between 2 consecutive modes?(refractive index of the medium n = 1).arrow_forward
- A laser emits a line at 632.8 nm. If the cavity is 12 cm long, how many modes oscillate in the cavity? How long does it take for the radiation to travel the entire cavity? What is the frequency difference between 2 consecutive modes?(refractive index of the medium n = 1).arrow_forwardThe number of microstates corresponding to each macrostate is given by N. The dominant macrostate or configuration of a system is the macrostate with the greatest weight W. Are both statements correct?arrow_forwardFor the single step reaction: A + B → 2C + 25 kJ If the activation energy for this reaction is 35.8 kJ, sketch an energy vs. reaction coordinate diagram for this reaction. Be sure to label the following on your diagram: each of the axes, reactant compounds and product compounds, enthalpy of reaction, activation energy of the forward reaction with the correct value, activation energy of the backwards reaction with the correct value and the transition state. In the same sketch you drew, after the addition of a homogeneous catalyst, show how it would change the graph. Label any new line "catalyst" and label any new activation energy.arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning