Concept explainers
(a)
Interpretation:
For the given reaction, the limiting reactant should be determined.
Concept Introduction:
Molarity of solution is defined as number of moles of solute in 1 L of solution.
It is mathematically represented as follows:
Here, n is number of moles and v is volume of solution in L.
In a
Answer to Problem 6.109P
Hydrogen bromide, HBr is the limiting reactant.
Explanation of Solution
The equation should be balanced first,
To balance the number of hydrogen and bromine give coefficient 2 to HBr thus,
To determine the limiting reactant, calculate the number of moles of Ca and HBr present.
The molarity of HBr is 0.325 m and volume is 115 mL. Now, number of moles of HBr can be calculated as follows:
Rearranging,
Putting the values,
Similarly, number of moles of Ca can be calculated as follows:
Molar mass of Ca is 40.078 g/mol thus,
From the balanced chemical reaction,
1 mol Ca reacts with 2 mol of HBr thus, for 0.0364 mol of Ca, 0.07285 mol of HBr is required. But number of moles of HBr is 0.03737 mol thus, HBr is a limiting reactant.
(b)
Interpretation:
The volume of hydrogen gas produced should be calculated if the vapor pressure of water at
Concept Introduction:
The ideal gas equation is as follows:
Here, p is pressure, v is volume, n is number of moles, r is Universal gas constant and t is temperature.
Answer to Problem 6.109P
0.4560 L.
Explanation of Solution
The balanced chemical reaction is as follows:
Since, HBr is a limiting reactant thus, amount of hydrogen gas produced depends on the amount of HBr.
From the balanced chemical reaction, 2 mol of HBr gives 1 mol of
Thus, 1 mol of HBr gives 0.5 mol of
The number of HBr is 0.03737 mol thus, number of moles of
From ideal gas equation, volume can be calculated as follows:
Pressure is 754 torr or 0.9921 atm and temperature is
Putting the values,
Thus, volume of hydrogen gas is 0.4560 L.
(c)
Interpretation:
The mass of excess reactant remain after the completion of reaction should be calculated.
Concept Introduction:
The excess reactant is the one that present in excess amounts, the amount of product does not depend on the amount of the excess reactant and it remains after the completion of the reaction.
Answer to Problem 6.109P
Explanation of Solution
The balanced chemical reaction is as follows:
Here, HBr is limiting reactant, the number of moles of HBr is 0.03737 mol. From the reaction, 2 mol of HBr reacts with 1 mol of Ca thus, 1 mol of HBr reacts with 0.5 mol of Ca. Thus, 0.03737 mol HBr reacts with 0.018685 mol of Ca. The number of moles of Ca present is 0.0364 mol thus, number of moles of Ca remains can be calculated as follows:
Since, molar mass of Ca is 40.078 g.mol, its mass can be calculated as follows:
Putting the values,
Want to see more full solutions like this?
Chapter 6 Solutions
Student Solutions Manual for Bettelheim/Brown/Campbell/Farrell/Torres' Introduction to General, Organic and Biochemistry, 11th
- For each of the following, indicate whether the arrow pushes are valid. Do we break any rules via the arrows? If not, indicate what is incorrect. Hint: Draw the product of the arrow and see if you still have a valid structure. a. b. N OH C. H N + H d. e. f. مه N COHarrow_forwardDecide which is the most acidic proton (H) in the following compounds. Which one can be removed most easily? a) Ha Нь b) Ha Нь c) CI CI Cl Ha Ньarrow_forwardProvide all of the possible resonanse structures for the following compounds. Indicate which is the major contributor when applicable. Show your arrow pushing. a) H+ O: b) c) : N :O : : 0 d) e) Оarrow_forward
- Draw e arrows between the following resonance structures: a) b) : 0: :0: c) :0: N t : 0: بار Narrow_forwardDraw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. Cl Substitution will not occur at a significant rate. Explanation Check :☐ O-CH + Х Click and drag to start drawing a structure.arrow_forwardDraw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. Cl C O Substitution will not occur at a significant rate. Explanation Check + O-CH3 Х Click and drag to start drawing a structure.arrow_forward
- ✓ aw the major substitution products you would expect for the reaction shown below. If substitution would not occur at a significant rate under these conditions, check the box underneath the drawing area instead. Be sure you use wedge and dash bonds where necessary, for example to distinguish between major products. Note for advanced students: you can assume that the reaction mixture is heated mildly, somewhat above room temperature, but strong heat or reflux is not used. C Cl HO–CH O Substitution will not occur at a significant rate. Explanation Check -3 ☐ : + D Click and drag to start drawing a structure. © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use Privacy Cearrow_forwardPlease correct answer and don't used hand raitingarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forward
- Determine whether the following reaction is an example of a nucleophilic substitution reaction: Br OH HO 2 -- Molecule A Molecule B + Br 义 ollo 18 Is this a nucleophilic substitution reaction? If this is a nucleophilic substitution reaction, answer the remaining questions in this table. Which of the reactants is referred to as the nucleophile in this reaction? Which of the reactants is referred to as the organic substrate in this reaction? Use a ŏ + symbol to label the electrophilic carbon that is attacked during the substitution. Highlight the leaving group on the appropriate reactant. ◇ Yes O No O Molecule A Molecule B Molecule A Molecule B टेarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning