In recent years, scientists have discovered hundreds of planets orbiting other stars. Some of these planets are in orbits that are similar to that of earth, which orbits the sun (Msun = 1.99 × 1030 kg) at a distance of 1.50 × 1011 m, called 1 astronomical unit (1 au). Others have extreme orbits that are much different from anything in our solar system. Problems 47–49 relate to some of these planets that follow circular orbits around other stars.
49. Kepler-42c orbits at a very close 0.0058 au from a small star with a mass that is 0.13 that of the sun. How long is a “year” on this world?
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
College Physics: A Strategic Approach Plus Mastering Physics with Pearson eText -- Access Card Package (4th Edition) (What's New in Astronomy & Physics)
Additional Science Textbook Solutions
Campbell Biology: Concepts & Connections (9th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Campbell Biology (11th Edition)
Human Anatomy & Physiology (2nd Edition)
Cosmic Perspective Fundamentals
Genetic Analysis: An Integrated Approach (3rd Edition)
- Model the Moons orbit around the Earth as an ellipse with the Earth at one focus. The Moons farthest distance (apogee) from the center of the Earth is rA = 4.05 108 m, and its closest distance (perigee) is rP = 3.63 108 m. a. Calculate the semimajor axis of the Moons orbit. b. How far is the Earth from the center of the Moons elliptical orbit? c. Use a scale such as 1 cm 108 m to sketch the EarthMoon system at apogee and at perigee and the Moons orbit. (The semiminor axis of the Moons orbit is roughly b = 3.84 108 m.)arrow_forwardThe Sun has a mass of approximately 1.99 1030 kg. a. Given that the Earth is on average about 1.50 1011 m from the Sun, what is the magnitude of the Suns gravitational field at this distance? b. Sketch the magnitude of the gravitational field due to the Sun as a function of distance from the Sun. Indicate the Earths position on your graph. Assume the radius of the Sun is 7.00 108 m and begin the graph there. c. Given that the mass of the Earth is 5.97 1024 kg, what is the magnitude of the gravitational force on the Earth due to the Sun?arrow_forwardThe astronaut orbiting the Earth in Figure P3.27 is preparing to dock with a Westar VI satellite. The satellite is in a circular orbit 600 km above the Earth’s surface, where the free-fall acceleration is 8.21 m/s2. Take the radius of the Earth as 6 400 km. Determine the speed of the satellite and the time interval required to complete one orbit around the Earth, which is the period of the satellite. Figure P3.27arrow_forward
- Let gM represent the difference in the gravitational fields produced by the Moon at the points on the Earths surface nearest to and farthest from the Moon. Find the fraction gM/g, where g is the Earths gravitational field. (This difference is responsible for the occurrence of the lunar tides on the Earth.)arrow_forwardPlanetary orbits are often approximated as uniform circular motion. Figure P7.9 is a scaled representation of a planets orbit with a semimajor axis of 1.524 AU. a. Use Figure P7.9 to find the ratio of the Suns maximum gravitational field to its minimum gravitational field on the planets orbit. b. What is the ratio of the planets maximum speed to its minimum speed? c. Comment on the validity of approximating this orbit as uniform circular motion.arrow_forwardA satellite is orbiting around a planet in a circular orbit. The radius of the orbit, measured from the center of the planet is R = 1.4 × 107 m. The mass of the planet is M = 4.4 × 1024 kg. Express the magnitude of the gravitational force F in terms of M, R, the gravitational constant G, and the mass m of the satellite. F = Express the magnitude of the centripetal acceleration ac of the satellite in terms of the speed of the satellite v, and R. ac = Express the speed v in terms of G, M and R. v = Calculate the numerical value of v, in m/s. v =arrow_forward
- In recent years, scientists have discovered hundreds of planets orbiting other stars. Some of these planets are in orbits that are similar to that of earth, which orbits the sun (Msun = 1.99 x 1030 kg) at a distance of 1.50 x 1011 m, called 1 astronomical unit (1 au). Others have extreme orbits that are much different from anything in our solar system. The problem relates to some of these planets that follow circular orbits around other stars. WASP-32b orbits with a period of only 2.7 days a star with a mass that is 1.1 times that of the sun. How many au from the star is this planet?arrow_forwardIn recent years, scientists have discovered thousands of exoplanets (planets orbiting stars other than the Sun). Some are in orbits similar to that of Earth, which revolves around the Sun (Msun = 1.99 × 1030 kg) at a distance of 1.50 × 1011 m — a distance defined as 1 astronomical unit (AU). Others have extreme orbits that are very different from anything in our solar system. For example, the exoplanet Kepler-42c circles its star at a distance of 0.0058 AU. Its star is small, having only 0.13 times the mass of the Sun. How long is Kepler-42c’s period of revolution? How does this value compare to Earth’s period of 365 days?arrow_forwardScientists want to place a 4 × 103 kg satellite in orbit around Mars. They plan to have the satellite orbit at a speed of 2330 m/s in a perfectly circular orbit. Here is some information that may help solve this problem: mmars = 6.4191 x 1023 kgrmars = 3.397 x 106 mG = 6.67428 x 10-11 N-m2/kg2 1.)Which of the following quantities would change the radius the satellite needs to orbit at? a.)the mass of the satellite b.)the mass of the planet c.)the speed of the satellite 2.)What should the speed of the orbit be, if we want the satellite to take 8 times longer to complete one full revolution of its orbit?arrow_forward
- In recent years, scientists have discovered hundreds of planets orbiting other stars. Some of these planets are in orbits that are similar to that of earth, which orbits the sun (Msun 1.99 x 1030 kg) at a distance of 1.50 x 1011 m, called 1 astronomical unit (1 au). Others have extreme orbits that are much different from anything in our solar system. The following problem relates to one of these planets that follows circular orbit around its star. Part A Kepler-42c orbits at a very close 0.0058 au from a small star with a mass that is 0.13 that of the sun. How long is a "year" on this world? Assume the orbital period of earth is 365 days. Express your answer in hours. 15. ΑΣΦ T = .000122 Submit Previous Answers Request Answer X Incorrect; Try Again; 4 attempts remaining ? hoursarrow_forwardA satellite is orbiting around a planet in a circular orbit. The radius of the orbit, measured from the center of the planet is R = 1.8 × 107 m. The mass of the planet is M = 4.8 × 1024 kg. a)Express the magnitude of the gravitational force F in terms of M, R, the gravitational constant G, and the mass m of the satellite. b)Express the magnitude of the centripetal acceleration ac of the satellite in terms of the speed of the satellite v, and R. c) Express the speed v in terms of G, M and R.arrow_forwardAn 8.6 × 1021 kg moon orbits a distant planet in a circular orbit of radius 1.5 × 108 m. It experiences a 1.1 × 1019 N gravitational pull from the planet. What is the moon's orbital period in earth days?arrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning