Concept explainers
(a)
Interpretation:
Molar concentration of all the molecular and ionic species present in
(a)
Explanation of Solution
Sodium hydroxide is completely soluble in water and hence it dissociates completely into ions. This can be represented as,
Concentration of
Relation between the concentration of hydroxide ion and hydrogen ion in aqueous solution can be used to calculated the concentration of hydrogen ions,
The concentration of all the ionic species is calculated as,
Molecular species that is involved is water molecule. The molar concentration of water can be calculated by assuming the density of solution to be
Ratio of number of moles of solute that is present in one liter of solution is known as molarity.
The moles of water that is present in one liter of solution can be calculated using density and molar mass as given below,
Therefore, the concentration of molecular species is calculated as
Concentration of all species in
(b)
Interpretation:
Molar concentration of all the molecular and ionic species present in
(b)
Explanation of Solution
Hydrogen chloride is completely soluble in water and hence it dissociates completely into ions. This can be represented as,
Concentration of
Relation between the concentration of hydroxide ion and hydrogen ion in aqueous solution can be used to calculated the concentration of hydrogen ions,
The concentration of all the ionic species is calculated as,
Molecular species that is involved is water molecule. The molar concentration of water can be calculated by assuming the density of solution to be
Ratio of number of moles of solute that is present in one liter of solution is known as molarity.
The moles of water that is present in one liter of solution can be calculated using density and molar mass as given below,
Therefore, the concentration of molecular species is calculated as
Concentration of all species in
Want to see more full solutions like this?
Chapter 6 Solutions
Chemistry in Context
- Part II. two unbranched ketone have molecular formulla (C8H100). El-ms showed that both of them have a molecular ion peak at m/2 =128. However ketone (A) has a fragment peak at m/2 = 99 and 72 while ketone (B) snowed a fragment peak at m/2 = 113 and 58. 9) Propose the most plausible structures for both ketones b) Explain how you arrived at your conclusion by drawing the Structures of the distinguishing fragments for each ketone, including their fragmentation mechanisms.arrow_forwardPart V. Draw the structure of compound tecla using the IR spectrum Cobtained from the compound in KBr pellet) and the mass spectrum as shown below. The mass spectrum of compound Tesla showed strong mt peak at 71. TRANSMITTANCE LOD Relative Intensity 100 MS-NW-1539 40 20 80 T 44 55 10 15 20 25 30 35 40 45 50 55 60 65 70 75 m/z D 4000 3000 2000 1500 1000 500 HAVENUMBERI-11arrow_forwardTechnetium is the first element in the periodic chart that does not have any stable isotopes. Technetium-99m is an especially interesting and valuable isotope as it emits a gamma ray with a half life ideally suited for medical tests. It would seem that the decay of technetium should fit the treatment above with the result In(c/c) = -kt. The table below includes data from the two sites: http://dailymed.nlm.nih.gov/dailymed/druginfo.cfm?id=7130 http://wiki.medpedia.com/Clinical: Neutrospec_(Technetium_(99m Tc)_fanolesomab). a. b. C. Graph the fraction (c/c.) on the vertical axis versus the time on the horizontal axis. Also graph In(c/c.) on the vertical axis versus time on the horizontal axis. When half of the original amount of starting material has hours fraction remaining disappeared, c/c = ½ and the equation In(c/c.) = -kt becomes In(0.5) = -kt1/2 where t₁₂ is the half life (the time for half of the material to decay away). Determine the slope of your In(c/c.) vs t graph and…arrow_forward
- Please correct answer and don't use hand ratingarrow_forward1. a) Assuming that an atom of arsenic has hydrogen-like atomic orbitals, sketch the radial probability plots for 4p and 4d orbitals of S atom. Indicate angular and radial nodes in these orbitals. (4 points) b) Calculate Zeff experienced by and electron in 4p AO's in a arsenic atom. Use Slater rules that were discussed in lecture. (3 points)arrow_forwardNonearrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY