![Physics: Principles with Applications](https://www.bartleby.com/isbn_cover_images/9780321625922/9780321625922_largeCoverImage.gif)
Physics: Principles with Applications
7th Edition
ISBN: 9780321625922
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6, Problem 4Q
Can the normal force on an object ever do work? Explain.
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
SARET CRKS AUTOWAY
12. A stone is dropped from the top of a cliff. It is seen to hit the ground below
after 3.55 s. How high is the cliff?
13. A ball is dropped from rest at the top of a building that is 320 m tall. Assuming
no air resistance, what is the speed of the ball just before it strikes the ground?
14. Estimate (a) how long it took King Kong to fall straight down from the top
of the Empire State Building (280m high), and (b) his velocity just before
"landing".
Useful equations
For Constant Velocity:
V =>
D
X = V₁t + Xo
For Constant Acceleration:
Vr = V + at
X = Xo+Vot +
v=V+2a(X-Xo)
\prom = V +V
V velocity
t = time
D Distance
X = Final Position
Xo Initial Position
V = Final Velocity
Vo Initial Velocity
a = acceleration
For free fall
Yf
= Final Position
Yo Initial Position
g = 9.80
m
$2
For free fall:
V = V + gt
Y=Yo+Vo t +
+gt
V,² = V₁²+2g (Y-Yo)
V+Vo
Vprom=
2
6
Solve the problems
A 11 kg weight is attached to a spring with constant k = 99 N/m and subjected to an external force
F(t) =-704 sin(5t). The weight is initially displaced 4 meters above equilibrium and given an
upward velocity of 5 m/s. Find its displacement for t> 0.
y(t)
ון
Chapter 6 Solutions
Physics: Principles with Applications
Ch. 6 - A skier starts at the top of a hill. On which run...Ch. 6 - In what ways is the word “work’' as used in...Ch. 6 - Can a centripetal force ever do work on an object?...Ch. 6 - Why is it tiring to push hard against a solid wall...Ch. 6 - Can the normal force on an object ever do work?...Ch. 6 - You have two springs that are identical except...Ch. 6 - If the speed of a particle triples, by what factor...Ch. 6 - List some everyday forces that are not...Ch. 6 - A hand exerts a constant horizontal force on a...Ch. 6 - You lift heavy book from a table to a high shelf....
Ch. 6 - A hill has a height h. A child on a sled (total...Ch. 6 - Analyze the motion of a simple swinging pendulum...Ch. 6 - In Fig. 6-31, water balloons are tossed from the...Ch. 6 - What happens to the gravitational potential energy...Ch. 6 - Experienced hikers prefer to step over a fallen...Ch. 6 - The energy transformations in pole vaulting and...Ch. 6 - Prob. 16QCh. 6 - 17. Two identical arrows, one with twice the speed...Ch. 6 - Prob. 18QCh. 6 - Prob. 19QCh. 6 - Describe the energy transformations that take...Ch. 6 - Prob. 21QCh. 6 - Prob. 22QCh. 6 - Prob. 23QCh. 6 - Prob. 1MCQCh. 6 - Prob. 2MCQCh. 6 - When the speed of your car is doubled, by what...Ch. 6 - Prob. 4MCQCh. 6 - Prob. 5MCQCh. 6 - Prob. 6MCQCh. 6 - Prob. 7MCQCh. 6 - Prob. 8MCQCh. 6 - Prob. 9MCQCh. 6 - Prob. 10MCQCh. 6 - Prob. 11MCQCh. 6 - Prob. 12MCQCh. 6 - Prob. 13MCQCh. 6 - Prob. 14MCQCh. 6 - A 75.0-kg firefighter climbs a flight of stairs...Ch. 6 - The head of a hammer with a mass of 1.2 kg is...Ch. 6 - How much work did the movers do (horizontally)...Ch. 6 - A 1200-N crate rests on the floor. How much work...Ch. 6 - What is the minimum work needed to push a 950-kg...Ch. 6 - Estimate the work you do to mow a lawn 10 m by 20...Ch. 6 - In a certain library the first shelf is 15.0 cm...Ch. 6 - A lever such as that shown in Fig. 6-35 can be...Ch. 6 - A box of mass 4.0 kg is accelerated from rest by a...Ch. 6 - A 380-kg piano slides 2.9 m down a 25° incline and...Ch. 6 - Recall from Chapter 4, Example 4-14, that you can...Ch. 6 - A grocery cart with mass of 16 kg is being pushed...Ch. 6 - The force on a particle, acting along the x axis,...Ch. 6 - A 17,000-kg jet takes off from an aircraft carrier...Ch. 6 - At room temperature, an oxygen molecule, with mass...Ch. 6 - (a) If the kinetic energy of a particle is...Ch. 6 - How much work is required to stop an electron...Ch. 6 - How much work must be done to stop a 925-kg car...Ch. 6 - Prob. 19PCh. 6 - A baseball (m = 145 g) traveling 32 m/s moves a...Ch. 6 - Prob. 21PCh. 6 - Prob. 22PCh. 6 - Prob. 23PCh. 6 - 24. (Ill) One car has twice the mass of a second...Ch. 6 - 25. (Ill) A 265-kg load is lifted 18.0 m...Ch. 6 - 26. (I) By how much does the gravitational...Ch. 6 - A spring has a spring constant k of 88.0 N/m. How...Ch. 6 - Prob. 28PCh. 6 - 29. (II) A 66.5-kg hiker starts at an elevation of...Ch. 6 - Prob. 30PCh. 6 - A novice skier starting from rest, slides down an...Ch. 6 - 32. (I) Jane, looking for Tarzan, is running at...Ch. 6 - A sled is initially given a shove up a...Ch. 6 - Prob. 34PCh. 6 - 35. (II) A spring with k=83 N/m hangs vertically...Ch. 6 - Prob. 36PCh. 6 - Prob. 37PCh. 6 - Prob. 38PCh. 6 - Prob. 39PCh. 6 - Prob. 40PCh. 6 - Prob. 41PCh. 6 - 42. (II) What should be the spring constant k of a...Ch. 6 - 43. (Ill) An engineer is designing a spring to be...Ch. 6 - Prob. 44PCh. 6 - 45. (III) A cyclist intends to cycle up a 7.50°...Ch. 6 - Prob. 46PCh. 6 - Prob. 47PCh. 6 - Prob. 48PCh. 6 - Prob. 49PCh. 6 - Prob. 50PCh. 6 - Prob. 51PCh. 6 - 52. (II) You drop a ball from a height of 2.0 m,...Ch. 6 - 53. (II) A 66-kg skier starts from rest at the top...Ch. 6 - 54. (II) A projectile is fired at an upward angle...Ch. 6 - 55. (II) The Lunar Module could make a safe...Ch. 6 - 56. (III) Early test flights for the space shuttle...Ch. 6 - How long will It take a 2750-W motor to lift a...Ch. 6 - 58. (I) (a) Show that one British horsepower (550...Ch. 6 - An 85-kg football player traveling 5.0 m/s is...Ch. 6 - Prob. 60PCh. 6 - Prob. 61PCh. 6 - A shot-putter accelerates a 7.3-kg shot from rest...Ch. 6 - Prob. 63PCh. 6 - 64. (II) How much work can a 2.0-hp motor do in...Ch. 6 - Prob. 65PCh. 6 - Prob. 66PCh. 6 - Prob. 67PCh. 6 - Prob. 68PCh. 6 - Prob. 69PCh. 6 - 70. (II) What minimum horsepower must a motor have...Ch. 6 - Prob. 71PCh. 6 - Prob. 72GPCh. 6 - Prob. 73GPCh. 6 - Prob. 74GPCh. 6 - Prob. 75GPCh. 6 - Prob. 76GPCh. 6 - Prob. 77GPCh. 6 - Prob. 78GPCh. 6 - Prob. 79GPCh. 6 - Prob. 80GPCh. 6 - Prob. 81GPCh. 6 - Prob. 82GPCh. 6 - Prob. 83GPCh. 6 - Prob. 84GPCh. 6 - Prob. 85GPCh. 6 - Prob. 86GPCh. 6 - Prob. 87GPCh. 6 - Prob. 88GPCh. 6 - Prob. 89GPCh. 6 - Prob. 90GPCh. 6 - Prob. 91GPCh. 6 - Prob. 92GPCh. 6 - Prob. 93GPCh. 6 - Prob. 94GP
Additional Science Textbook Solutions
Find more solutions based on key concepts
What characteristic of the sex chromosomes allowed Morgan to correlate their behavior with that of the alleles ...
Campbell Biology (11th Edition)
1. How many significant figures does each of the following numbers have?
a. 0.73 b. 7.30 c. 73 d. 0.073
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Flask A contains yeast cells in glucose-minimal salts broth incubated at 30C with aeration. Flask B contains ye...
Microbiology: An Introduction
Where are skeletal cartilages located?
Human Anatomy & Physiology (2nd Edition)
15. A good scientific hypothesis is based on existing evidence and leads to testable predictions. What hypothes...
Campbell Biology: Concepts & Connections (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 7. A race car accelerates from rest to 55 m s-1 in 5.0 seconds. The acceleration of the car Is m s-² 8. An object's speed increases uniformly from 10.5 km per hour to 99.8 km per hour in 2.41 seconds. Calculate the acceleration in m s-2 and express your answer to three significant figures. 9. The acceleration-time graph of a car is shown below. The initial speed of the car is 5.0 m s-1. # Acceleration (ms) 12 8.0- 4.0- 2.0 4.0 6.0 Time (s) Calculate the velocity of the car at t = 4.0 s. 3arrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- Problem Seven. A football receiver running straight downfield at 5.60 m/s is 11.5 m in front of the quarterback when a pass is thrown downfield at an angle of 35.0° horizon. above the 8.) If the receiver never changes speed and the ball is caught at the same height from which it was thrown, find the distance between the quarterback and the receiver when the catch is made. (A) 21.3 (B) 17.8 (C) 18.8 (D) 19.9 (E) 67.5arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forwardPlease solve and answer the question correctly please. Thank you!!arrow_forward
- Please view both photos, and answer the question correctly please. Thank you!!arrow_forwardA thrown brick hits a window, but doesn't break it. Instead it reverses direction and ends down on the ground below the window. Since the brick didn't break the glass, we know: О The force of the brick on the glass > the force of the glass on the brick. О The force of the brick on the glass the force of the glass on the brick. = О The force of the brick on the glass < the force of the glass on the brick. О The brick didn't slow down as it broke the glass.arrow_forwardAlexandra (wearing rubber boots for traction) is attempting to drag her 32.6-kg Golden Retriever across the smooth ice by applying a horizontal force. What force must she apply to move the dog with a constant speed of 0.950 m/s? ☐ 31.0 lb. ☐ 319 kg. ○ Zero. 32.6 kg.arrow_forward
- The figure shows a graph of the acceleration of an object as a function of the net force acting on it. The mass of this object, in grams, is closest to 11 a(m/s²) 8.0+ 6.0- 4.0- 2.0- 0+ F(N) 0.00 0.50 1.00 ☐ 130 ○ 8000 ☐ 89arrow_forwardValues that are within standard deviations represent measurements that are considered to be near the true value. Review the data from the lab and determine whether your data is within standard deviations. Report, using numerical values, whether your data for each angle is within standard deviations. An acceptable margin of error typically falls between 4% and 8% at the 95% confidence level. Review your data for each angle to determine whether the margin of error is within an acceptable range. Report with numerical values, whether your data for each angle is within an acceptable margin of error. Can you help explain what my data means in terms of the standard deviation and the ME? Thanks!arrow_forwardA sinusoidal wave is propagating along a stretched string that lies along the x-axis. The displacement of the string as a function of time is graphed in (Figure 1) for particles at x = 0 and at x = 0.0900 m. You are told that the two points x = 0 and x = 0.0900 m are within one wavelength of each other. If the wave is moving in the +x-direction, determine the wavelength. If instead the wave is moving in the -x-direction, determine the wavelength. Please show all stepsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079137/9781305079137_smallCoverImage.gif)
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Mechanical work done (GCSE Physics); Author: Dr de Bruin's Classroom;https://www.youtube.com/watch?v=OapgRhYDMvw;License: Standard YouTube License, CC-BY