
Concept explainers
(a)
The work done by the gravitational force on the statue.

Answer to Problem 43QAP
The work done by the gravitational force on the statue is
Explanation of Solution
Given:
Mass of the crate
Angle made by the inclined plane with the horizontal
Displacement of the crate along the plane
Coefficient of kinetic friction between the crate and the plane
Formula used:
Draw a free body diagram representing the forces and apply the condition for dynamic equilibrium. Work done by a force is given by the product of the force and the displacement along the direction of force.
Calculation:
Draw the free body diagram for the forces and assume the positive direction of the x axis down the plane.
Figure 1
The gravitational force
The magnitude of the gravitational force is given by,
Resolve the gravitational force
Therefore,
The work done by the x component of the gravitational force is given by,
Substitute the known values of the variables in the above equation.
The work done by the y component of the gravitational force is given by,
Substitute the known values of the variables in the above equation.
Therefore the work done by the gravitational force is given by,
Conclusion:
Thus the work done by the gravitational force on the statue is
(b)
Work done by the Curator in pushing the statue up the incline.

Answer to Problem 43QAP
The work done by the Curator in pushing the statue up the incline is
Explanation of Solution
Given:
Mass of the crate
Angle made by the inclined plane with the horizontal
Displacement of the crate along the plane
Coefficient of kinetic friction between the crate and the plane
Calculation:
The crate moves with a constant velocity, hence it is in dynamic equilibrium. The sum of the forces along the x and the y directions, independently add up to zero.
Use Fig 1, and apply the condition of equilibrium along the y axis.
From equation (3)
The magnitude of the force of friction and the normal force are related as follows:
From equation (4),
The force of friction acts along the − x axis.
Therefore,
Apply the condition of equilibrium along the x direction.
Therefore,
Use equations (2)
Substitute the known values of the variables in the above equation.
Write the expression for the work done by the Curator.
Substitute the values of the variables in the above equation.
Conclusion:
Thus the work done by the Curator in pushing the statue up the incline is
(c)
The work done by the friction force on the crate

Answer to Problem 43QAP
The work done by the friction force on the crate is
Explanation of Solution
Given:
Mass of the crate
Angle made by the inclined plane with the horizontal
Displacement of the crate along the plane
Coefficient of kinetic friction between the crate and the plane
Formula used:
The work done by the
Calculation:
Use equation (5)
Substitute the known values of the variables in the equation.
Conclusion:
Thus, the work done by the friction force on the crate is
(d)
The work done by the normal force between the crate and the incline.

Answer to Problem 43QAP
The work done by the normal force between the crate and the incline is 0.
Explanation of Solution
Given:
The expressions for normal force and displacement.
Formula used:
The work done by the normal force is given by,
Calculation:
Substitute the given values of the vectors in the formula.
Conclusion:
Thus the work done by the normal force between the crate and the incline is 0.
Want to see more full solutions like this?
Chapter 6 Solutions
COLLEGE PHYSICS
- Two conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forwardPlease see the attached image and answer the set of questions with proof.arrow_forwardHow, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forward
- A spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forwardSketch a sign wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forwardSketch a sine wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forward
- The drawing shows two long, straight wires that are suspended from the ceiling. The mass per unit length of each wire is 0.050 kg/m. Each of the four strings suspending the wires has a length of 1.2 m. When the wires carry identical currents in opposite directions, the angle between the strings holding the two wires is 20°. (a) Draw the free-body diagram showing the forces that act on the right wire with respect to the x axis. Account for each of the strings separately. (b) What is the current in each wire? 1.2 m 20° I -20° 1.2 marrow_forwardplease solve thisarrow_forwardplease solve everything in detailarrow_forward
- 6). What is the magnitude of the potential difference across the 20-02 resistor? 10 Ω 11 V - -Imm 20 Ω 10 Ω 5.00 10 Ω a. 3.2 V b. 7.8 V C. 11 V d. 5.0 V e. 8.6 Varrow_forward2). How much energy is stored in the 50-μF capacitor when Va - V₁ = 22V? 25 µF b 25 µF 50 µFarrow_forward9). A series RC circuit has a time constant of 1.0 s. The battery has a voltage of 50 V and the maximum current just after closing the switch is 500 mA. The capacitor is initially uncharged. What is the charge on the capacitor 2.0 s after the switch is closed? R 50 V a. 0.43 C b. 0 66 C c. 0.86 C d. 0.99 C Carrow_forward
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





